- AD-A268 518 @
u s A Is E c MURAR TR mA L/

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

SAMeDL:
Technical Report
and Appendices A, B, and G

ASQB-GI-92-015

September 1992 N T ! C

L wE L a{, :
&, AUG25 1993‘D :

N
AIRMICS | , %\

115 O’Keefe Building
93-19669

Georgia Institute of Technology
Aanta, GA 30332-0507 INRARHDN

93 8 24 005

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188
Exp. Date: Jun 30, 1986

[7a. REPORT SECURITY CLASSIFICATION

0. RESTRICTIVE MARKINGS

[Za gEEUEI i¢ CLASSIEICAi ION AUTHORITY

3. OIST ngUTION/AVAILABIU TY OF REPORT

T TS T8 T8 T T T VTN T —
er. NAME OF FUNDING/SPONSORING
ORGANIZATION

Software Technology Branch, ARL

(It applicabie)
AMSRL-CI-CD

2D, DECLASSIFICATION/ DOWNGRADING SCHEDULE N/A
3. PERFORMING ORGANIZATION REPORT NUMBER(S) 3. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A
6a. NAME OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
(It applicable)
N/A
. ADDRESS (City, State, and ZIP Code)

8b. OFFICE SYMBOL

N‘A
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

‘W_ac. ADDRESS (City, State, and ZIP Code)

115 O“Keefe Bldg.

Georgia Institute of Technology
Atlanta, GA 30332-0800

T T YT YT Y —T v
10. SOURCE OF FUNDING NUMBERS
e T— 1

PROGRAM PROJECT TASK
ELEMENT NO.| NO. NO.

WORK UNIT
ACCESSION NO.

P
11. TITLE (Include Security Classification)

SAMeDL: Technical Report & Appendices A, B & G

12. PERSONAL AUTHOR(S)
MS. Deb Waterman

13a. TYPE OF REPORT
Technical Paper

13b. TIME COVERED
FROM_Apr 91 TO _Sept 92

14. DATE OF REPORT (Year. Month, Day)
Sept 1§, 1992

15. PAGE COUNT
81

16. SUPPLEMENTARY NOTATION

COSAT!I CODES
GRQUP

FIELD SUBGROUP

ule, SQL

i
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Ada Database Access, SAMeDL, Ada extension mod-

base Description Language (SAMeDL).
(Oracle,

to access database using a standard SQL

703/614-0209.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report details theAresearch efforts into the SQL Ada Module Data-
Four compilers are presented
Informix, XDB, and Sybase) that allow Ada application programs

compiler can be obtained from the DoD Ada Joint Program Office

query language. Copies of the

20. DI IBUTION/AVAILABILI A C
[x] UNCLASSIFIED/UNLIMITED[(] SAME AS RPT. g DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

a. | AL
LTC David S. Stevens

[~ 22¢. OFTICE SYMBOL |
AMSRL-CI-CD

H {include Area Code
(404) 894-3110

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

—SEQURITY CLASSIFICATION OF THIS PAGE

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,

distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief ames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS
Accession For it
[¥T1S CRA&I &
DTIC TAB O
Ui ounced d

DTIC QUALITY INSPECTED 3

| Juitirieation o L

By .
Didtribution/

! utll('y Codss
Avatll ’nd/or
DXS?‘ } Spunial

lf\\

ki

SAMeDL.TR.10.15 Sep 92

SAMeDL Pilot Project
TECHNICAL REPORT

Prepared for

U. S. Army Institute for Research in Management
Information, Communication and Computer Science (AIRMICS)
115 O’Keefe Building
Atlanta, GA 30332-0800

Contract No. DAKF11-91-C-0035
CDRL A003

Prepared by

STATISTICA, Inc.
12200 Sunrise Valley Drive, Suite 300
Reston, Virginia 22091

1.0 INTRODUCTION . .
1.1 Scope
1.2 Background . . .
1.2.1 SAMeDL
1.2.2 SIDPERS-3 . .
1.2.3 Intermetrics .

1.3 Technical Report

2.0 TASK 1 - SHADOW TASK .
2.1 Existing Application Migration .

SAMeDL.TR.10.15 Sep 92

TABLE

OF CONTENTS

Overview

2.1.1 Module Input Migration .

2.1.1.1 Approach .

2.1.1.2 Observations .

2.1.2 Interface Migration

2.1.2.1 Approach . .
2.1.2.2 Observations
2.1.3 Data Migration
2.1.3.1 Approach .

2.1.3.2 Observations
2.1.4 Test

2.1.4.1 Test Plan

2.1.4.2 Test Results .

2.2 New Application Development

2.2.1 Approach .

2.2.2 Observations .

DWW NN N o

N9

o .o [«]

10
10
10
10
11
11
12
13

17

SAMeDL.TR.10.15 Sep 92

2.2.2.1 Strong TYping . . ¢ ¢ ¢ ¢ 4 4 e e e e e e e e e e .17

2.2.2.2 Error Handling ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 « « . . 18

2.2.2.3 Null Handling . . ¢ & ¢ ¢ ¢ ¢ ¢ o o o &+ s « « « « « 19

2.2.3 Multiple Target Databases 19

3.0 TASK 2 - TOOLSET DEVELOPMENT« « v o o o o o . . 21

3.1 SAMeDL Module Manager Development 21

3.1.1 Design ittt e e e e e e e e e e e .22

3.1.2 COB « v v v e e e e e e s 22

3.1.3 Test .

. . 3 3 22

3.2 SAMeDL Compiler Upgrade ¢« % ¢ « « o « « . . 22

3.201 Design - . 3 3 L] . 22

3.2.2 Codettt e e e e e e e e e e e e e e e .. 23

3.2.3 TBE v v v v e e e e e e e e e e e e e s 23

3.3 SAMeDL Compiler Retargets « « « .« . - ... 24

3.3.1
3.3.2
3.3.3
3.3.4

Informix . . . & & & v 4 e i e e e e e e e e e e e e . 25

XDB

. - - . . ° - . 25

Sybase i ¢ i i e e e e e e e e e e . . 25

OTACLE . v & v v i e e e e e e e e e e e e e e e e . 26

3.4 Other Support Tool Development 27

Figure
Figure
Figure
Figure
Figure

2-1
2-2
2-3
2-4

2-5

Figures
Layered Approach c e e s e e e e e e e e
The SIbPERs-3 Prototype Architecture e e e e .

The Circular Dependency between SAMeDL and MM.

W v o un

The Circular Dependency Solution . .

Definition and Abstract Modules for Unit Object . 14

ii

 Figure 2-
Figure 2-
Figure 2-
Figure 2-

6
7
8
9

Table 2-1

Table 2-2

Appendix
Appendix

Appendix
Appendix
Appendix
Appendix
Apvendix

w

@ ™m W O O

SAMeDL.TR.10.15 Sep 92

Sample Schema Module for Redesigned Application .
The SAMeDL Redesign Architecture
Sample Status Map Declaration e e e e .
CONNECT Statements

Tables
CSUs in the Ada Application Layer e e e e

SIDPERS-3 Layers/Architecture Correlation
Appendices
- Acronyms and Bibliography e e e e e

- SAMeDL Development Environment Module Manager
Top Level Design e e e e e e e e e e e

- SAMeDL Development Environment Test Plan . .

- SAMeDL Language Reference Manual
- SAMeDL Installation Guides |

- SAMeDL User Manuals |

- CSU Test Cases e e e e e e .

iii

18
16
18

. 20

SAMeDL.TR.10.15 Sep 92
1.0 INTRODUCTION

The SQL Ada Module Description Language (SAMeDL) Pilot Project is
an Ada Technology Insertion Program (ATIP) that explores the merits
of the SQL Ada Module Extensions (SAME) methodology. SAME
methodology entails interfacing Ada applications with relational
Database Management Systems (DBMSs) that use SQL. Developed by Dr.
Marc Graham at the Software Engineering Institute (SEI), SAMeDL is
the language created to implement the SAME architecture.

1.1 Scope

The SAMeDL Pilot Project analyzes the value of the SAME methodology
for use on future Department of Defense (DoD) DBMS applications.
As a basis for the study, this project uses the SAMeDL to redesign
the SQL interface layer of an existing Ada application. This
effort is referred to as a "Shadow Task" because development does
not impact or influence the original Ada application development.
The Ada application chosen for the pilot project is the Standard
Installation Division Personnel System - Third Release (SIDPERS-3)
Demonstration Prototype, a large Army Management Information System
é?ISi. The prototype was originally designed using another SQL
nding.

STATISTICA approaches the pilot project in two stages: First, the
SQL binding layer is replaced with a duplicate layer implemented in
SAMeDL. The Ada application design and code remains unchanged.
Second, the Ada application and SQL interface layer will be
redesigned to incorporate features of Ada not incorporated in the
original application design due to the SQL binding. SAMeDL
provides the means to use Ada features such as strong typing and
exception handling.

As a byproduct of the SAMeDL Pilot Project analysis, a SAMeDL
toolset is Dbeing developed for four commercial DBMSs.
Intermetrics, Inc. is supporting STATISTICA in this contract by
developing the support toolset. The toolset includes a SAMeDL
compiler and Module Manager. The Module Manager is a library
manager that maintains source code controls and performs
consistency checks on SAMeDL source code and its corresponding
Ada/SQL interface. The resulting toolset provides the Ada
community with a more mature SAMeDL compiler that is standard
across DBMSs. With each retargeting of the compiler, STATISTICA
ports the Ada application layer and reports on the portability of
the compiler.

SAMeDL.TR.10.15 Sep 92
1.2 Background
1.2.1 SAMeDL

In 1986, the American National Standards Institute (ANSI) issued a
standard for SQL. At that time, the standard included annexes
describing interfaces between SQL and programming languages, such
as COBOL, FORTRAN, and Pascal. In 1987, the Ada Joint Program
Office (AJPO) tasked SEI to define an Ada SQL interface. SAME is
the result of SEI's efforts. The SAME uses Ada features to provide
the following services to Ada SQL applications:

® A robust treatment of SQL data within application
programs which effectively prevents use of null values as
though they were not null whilc requiring no run time
conversion of non-null data.

L A treatment of DBMS errors and exceptional conditions
which is flexible, allowing application designers to
decide which conditions are expected and which are
irrecoverable, yet prevents any such DBMS condition from
being "missed" by the application.

o An extended database description using abstract,
application oriented types and the application of a
strong typing discipline to SQL statements. (3]

1.2.2 SIDPERS-3

As the prime contractor, STATISTICA is developing SIDPERS-3 for the
Army. This Standard Army Management Information System (STAMIS)
automates applications in 36 personnel work categories.

In May 1991, STATISTICA presented a SIDPERS-3 Demonstration
Prototype to the Army that featured the functional requirements
described in several of the personnel work categories. The
prototype validates many of the technical characteristics
associated with an MIS development in Ada, such as appropriateness
of Ada binding, portability of applications, and robustness of the
Ada Programming Support Environment (APSE).

Although developers on the SIDPERS-3 Team have had many successes
in their use of Ada, binding Ada to DBMSs has presented significant
challenges. The SIDPERS-3 Team desires a binding that is straight
forward to implement, insulates the application software from the
specificity of a particular database implementation, and allows the
Ada software engineer to use the full power of Ada. SEI’'s work in
developing the SAME methodology has been closely followed. Early
in the program, the SIDPERS-3 Team reached a consensus that SAMeDL,
with an appropriate SAMeDL support toolset, would provide the

2

SAMeDL.TR.10.15 Sep 92

necessary Ada/DBMS binding layer. However, SAMeDL lacked support
tools, realistic application examples, and usage metrics (SAMeDL
has not been employed as the Ada/SQL binding on any large Ada MIS
program to date). Because of these barriers, the SIDPERS-3 Team
felt that it was too great a technical risk to rely on SAMeDL.
Hence, the SIDPERS-3 Team decided to forego the use of SAMeDL in
favor of other Ada/SQL interfacing methods.

1.2.3 Intermetrics

Intermetrics has been actively involved with the SAME Design
Committee since early 1988. To assist with the development of the
SAME methodology and the emerging standard SAMeDL during this
period, Intermetrics developed early prototype SAMeDL compilers to
promote the insertion of SAMeDL into mainstream Ada applications.
While these activities were useful in exhibiting proof of concept,
the seed that was planted did not grow as hoped; broad acceptance
and use of SAMeDL by the Ada community has not yet materialized.

A number of factors contribute to the Ada community'’s reluctance to
insert SAMeDL into large Ada applications; STATISTICA’s experience
indicates that two of the most significant factors are:

1.- The lack of realistic SAMeDL applications, wuser
experiences, and related measurements.

2. A shortage of robust SAMeDL support tools.
1.3 Technical Report Overview

The purpose of this technical report is to report quarterly the
results of STATISTICA’'s analysis and the progress of the toolset
development. The report will be accumulative in that sections will
be completed as activities are reported. The complete outline of
the report is provided as a work plan. As subtasks are completed,
the corresponding subsections will be completed.

Section 1 provides the introduction and background needed by the
casual reader for understanding of the remaining sections. The
project comprises two major tasks: the Shadow Task and Toolset
Development. Section 2 discusses the Shadow Task during which
developers migrate the existing interface layer to SAMeDL and then
redesign and re-implement the application layer to incorporate
SAMeDL features. Section 3 reports the efforts to develop the
Module Manager, upgrade the SAMeDL compiler, and retarget the
compiler to the four DBMSs.

Appendices provide supplemental information, and will be provided
as the information is gathered.

SAMeDL.TR.10.15 Sep 92
2.0 TASK 1 - SEADOW TASK

To show the feasibility and benefits of using SAMeDL, STATISTICA
will redesign and re-implement portions of the SIDPERS-3 prototype
demonstrated to the Army in May 1991. Table 2-1 lists the Computer
Software Units (CSUs) of the prototype that will compose the
application layer of the SAMeDL Project. These CSUs were chosen
based on the functionality and services required of the database.
Each CSU in the application layer represents a complete thread of
control to facilitate the analysis and measurement of performance.
The prototype currently uses XDB, a Commercial Off the Shelf (COTS)
SQL DBMS.

Sgt Ssg Promotion Eligibility Unit This CSU initially calculstes a soldier’s | Select 2,866
promotion points and generates PCN Update
AAA-209, DA Form 3355-E, Insert
Promotion Point Worksheet. Fetch
Promotion Standing List Removal This CSU removes a soldier from the Select 2,150
Action E5-E6 Promotion Standing List and Delete
generates PCN AAA-034, s Removal
From Local Recommended List
memorandum.
* Lines of Code

Table 2-1 CSUs in the Ada Application Layer

2.1 Existing Application Migration

Figure 2-1 shows that developers used a layered approach in the
design of the prototype to isolate the database. Figure 2-2 shows
the layers in more detail, with each box representing a group cf
Ada packages. Table 2-2 depicts the correlation between the layers
in Figure 2-1 and the Ada packages depicted in Figure 2-2.

Design decisions made early in the project were premised on using
a commercial DBMS. Inherently, SQL databases, limited to the
standard SQL data types, do not support strong data typing. To
avoid anonymous types and to add reliability and maintainability to
the system, the SIDPERS-3 Team created a layer of Type packages.
These packages declare subtypes corresponding to each column in the
database. In the Database Support layer, data retrieved from the

4

SAMeDL.TR.10.15 Sep 92

database is explicitly converted to SIDPERS-3 types before
processing by the application layer. The Database Support layer
isolates the SIDPERS-3 application from changes that may occur to
the database.

SIDPERS-3 APPLICATION SAMeDL APPLICATION
interface Layer interface Layer
SQL Module Generated Code SAMeDL Generated Code
Ada Programming Interface Ada Prograasming Interface
X08 X08

Figure 2-1 Layered Approach

The SIDPERS-3 Team developed a Man Machine Interface (MMI) to
handle all user interfaces, including reports. The data is passed
between the MMI and the application as string objects to support
all of the SIDPERS-3 data requirements. The Types packages written
to support the database interface also serve the MMI by eliminating
a conversion layer between the application and the MMI.

Finally, to avoid the bulky processing required to test for missing
data (null values), the SIDPERS-3 Team created the database with
NOT NULL columns. '

SAMeDL.TR.10.15 Sep 92

L)
Application
Reports Driver Screens
Types
Packages
L]
[]
L]
Database Field
Support seo s Data Stores o o o o o o Support
saL Database
Modules Access *
Modute tegend
Compiler
AP1
Developed by
SIDPERS-3
* Generated by the
module compiler
DaMs s o ¢« Shows dependencies

~——— [ndicates controt
flow

Figure 2-2 The SIDPERS-3 Prototype Architecture

SAMeDL.TR.10.15 Sep 92

Ada Application Application Driver No changes will be made to
Reports the application layer.
Screens

Field Support
Data Stores
Types Packages

Interface Layer Database Support Remove Commit/Rollback
procedures; add functions to
convert SAMeDL types to
SIDPERS-3 types; remove
exception handlers.

SQL Module Database Access Replace SQL modules with
GeneratedWCoded 7 SAM¢?§%99§EEEQZ,”

Table 2-2 SIDPERS-3 Layers/Architecture Correlation

There are no changes to the Ada application layer in the
Application Migration subtask. The prototype uses XDB's module
compiler as the SQL binding to the Ada application layer. For the
SAMeDL Pilot Project, this layer is replaced with a SAMeDL layer.
Subsection 2.1.1 discusses this conversion process. The Database
Support packages require modifications to remove features provided
by SAMeDL and add conversions of SAMeDL types to SIDPERS-3 types
(declared in the Types packages). The changes required to the
interface layer are discussed in Subsection 2.1.2.

2.1.1 Module Input Migration

The migration of the SQL input modules involves replacing the XDB
SQL Modules with SAMeDL Modules.

2.1.1.1 Approach

The project team quickly completed this step by referring to the
SQL statements in SQL module files for the specific SELECT, UPDATE,
DELETE, and INSERT statements. Also, since only certain tables and
columns are required by the chosen CSUs, the SQL modules provxded
the needed information for declaring the domain types and tables in
the SAMeDL Definition and Schema modules. The SAMeDL modules were
submitted to the SAMeDL compiler for generation of the Ada
packages. For the XDB DBMS, the Ada packages generated by the
SAMeDL compiler replace the Database Access files (refer to Figure
2-2) in the SIDPERS-3 model.

SAMeDL.TR.10.15 Sep 92
2.1.1.2 Observations

The ease of the SQL to SAMeDL module conversion can be attributed
to the module binding provided by XDB and the layering approach
used by STATISTICA to isolate the database. Had the SIDPERS-3 Team
chosen to use an embedded SQL interface without isolating the
database, the application layer would have required major changes
to migrate to SAMeDL.

2.1.2 Interface Migration

The interface migration involves modifying the interface layer
(refer to Figure 2-1) or Database Support packages (refer to Figure
2-2). The Database Support packages are changed to reference the
SAMeDL modules rather than the Database Access packages generated
by the XDB SQL module compiler.

2.1.2.1 Approach

The interface layer represents a set of Ada packages that provides
the conversion of SQL types to user-defined types specific to the
SIDPERS-3 application. The Database Support packages directly call
the Ada packages generated by the XDB SQL module compiler. The
Database Support packages were modified to interface with the Ada
code generated by the SAMeDL compiler. These packages provide
database control functions such as rollback, commit, open database,
close database, and error handling. Since these functions are
provided in the SAMeDL packages, the functions were removed from
the Database Support packages.

The SIDPERS-3 MMI uses one database table for processing error
messages. A SAMeDL module was written to provide this service, and
the appropriate MMI package was modified and recompiled to
interface with the new SAMeDL module.

2,1.2.2 Observations

The migration to SAMeDL required no modifications to the
application layer. Major changes, however, were required to the
Database Support packages to interface with the SAMeDL modules.

There is a conflict in the manner in which the SAMeDL modules and
the MMI display error messages. The SAMeDL error handling
procedure uses the Text_IO package to output to the screen a
message containing the error code. 1In contrast, the MMI provides
a standard display of all user messages. To take advantage of the
existing MMI procedure, the SAMeDL error handling procedure could
be modified to call the MMI to display the error message. This
solution, however, creates a circular dependency between the SAMeDL
layer and the MMI, as shown in Figure 2-3.

8

SAMeDL.TR.10.15 Sep 92

Application

SAMeDL |«

Figure 2-3 The Circular Dependency between SAMeDL and MMI

The solution to the circular dependency problem is the creation of
a separate error handling package, as shown in Figure 2-4. Upon
return of the error code, negative SQLCODE, from the database, the
SAMeDL . layer calls the error handler in the. Database Errors
package. The error handler uses the function to display user
message provided by the MMI.

>, [)
Datsbase Application
Errors
SAMeDL

Figure 2-4 The Circular Dependency Solution

SAMeDL.TR.10.15 Sep 92
2.1.3 Data Migration

The database for the SIDPERS-3 Demonstration Prototype contains
approximately 200 tables. Only 34 of these tables are accessed by
the two CSUs in the SAMeDL Pilot Project. Data migration involves
the transfer of the 34 tables to a smaller XDB database. Once the
subset database is created, it can be used for creating and loading
databases in Informix, Oracle, and Sybase.

2.1.3.1 Approach

STATISTICA found most of the table names for the two CSUs in the
SQL modules that were originally written for the SIDPERS-3
Demonstration Prototype. Other tables names, used as lookup tables
or pop-up windows, were found by perusing the Database Access
packages.

An SQL procedure was written using the XDB system tables to
generate the script file automatically to create the tables in a
new XDB database. Another script file was written to create
indexes identical to the original SIDPERS-3 indexes. The two
script files contain standard SQL statements; therefore, they can
be used to create the tables and indexes in the other DBMSs. Once
the tables and indexes were created, the export and import
utilities provided by XDB were used to move the data to the new
database.

The new database was tested for completeness using the original
SIDPERS-3 Demonstration Prototype. During testing, it was
discovered that the MMI uses a database table to display user
messages. This table was added to the new database.

2.1.3.2 Observations

The primary reason for creating a subset of the SIDPERS-3 database
was to facilitate loading data to Informix, Oracle, and Sybase.
The conversion of the database to these DBMSs will be described in
Subsection 2.2.3.

2.1.4 Test

Testing in the Application Migration subtask focuses on answering
two questions:

1. Is the application correctly converted, retaining all
functionality of the original application?

2. Are there differences in performance between the original
application and the new SAMeDL application?

10

SAMeDL.TR.10.15 Sep 92
2.1.4.1 Test Plan

To test the correctness of the SAMeDL application, the project team
is using the test cases created by the SIDPERS-3 team for the
SIDPERS-3 Demonstration Prototype. The CSU Test Cases are included
in this report as Appendix G. ©Using the test data in the XDB
database, the project team will execute the test procedures on both
the original application and the SAMeDl application. Any
discrepancies in the SAMeDL application will be noted, corrected,
and retested until the SAMeDL application is functionally equal to
the original, baseline application.

Performance differences between the original application and the
SAMeDL application are measured by recording system clock time at
identical points within each application. The clock time is
captured at the entry/exit to certain procedures and before/after
calls to the database. The process time for a procedure or
database call is calculated as the exit clock time minus the entry
clock time. Each selected procedure is tested repeatedly,
capturing the process time so that the minimum, maximum and average
processing times can be calculated and recorded for each procedure
or database call.

2.1.4.2 Test Results

The project team executed the test procedures contained in the CSU
Test Cases, Appendix G, against the original SIDPERS-3
Demonstration Prototype and the converted SAMeDL application. Each
test case was performed with duplicate results from each
application. The SIDPERS-3 Demonstration Prototype had been
correctly converted to SAMeDL without loss of functionality.

The project team is experiencing difficulty in measuring
performance differences between the two applications. The smallest
measure of time returned by the Interactive UNIX operating system
is tenths of seconds. This time increment is not granular enough
to show differences in processing time.

One solution is to run a "counting" process in the background while
the Ada application runs in the foreground. However, this approach
failed due to a conflict between the Ada run time and the UNIX
process scheduler. With Alsys, the Ada run time executes as a
separate process on top of the operating system. The conflict is
created when the Ada tasks are scheduled by the Ada run time
independently of the UNIX process scheduler. Since performance
could be a key discriminator for SAMeDL, the project team will
continue to explore other methods to measure processing time.

11

SAMeDL.TR.10.15 Sep 92
2.2 New Application Development

For the New Application Development subtask, STATISTICA will use
the same CSUs listed in Table 2-1. This approach provides a
baseline from which comparisons between methodologies can be made
as to design without functionality differences in the application
layer. In the New Applicaticn Development subtask, STATISTICA will
redesign and re-implement some of the Ada application layer to
analyze the SAMeDL features and to assess the value added using the
SAME methodology.

Further study of the SIDPERS-3 Demonstration Prototype design, as
depicted in Figure 2-2, reveals the following points:

1. The Screens box represents a series of Ada packages, the
design of which is dictated by the MMI. The control flow
within the each package is determined by the active
screen name and the key used to exit that screen.
Although tailored for each CSU, these packages rely
heavily on the MMI and can be considered part of the MMI.
Since a user interface is usually considered external to,
and separate from, the application, the packages were not
modified to include SAMeDL.

2. The Screens packages are dependent on Field Support
packages for validating user-entered data, retrieving
data from the database for pop-up or help windows, and
storing data in a Data Store for use during later
processing.

3. The Data Stores box represents several package
specifications that declare objects for temporary storage
of values either retrieved from the database or entered
by the user. The data is stored until needed for
reports, validation or calculations. The objects in the
Data Stores are declared as user-defined subtypes found
in the Types packages.

4. The Reports box is also dependent on the MMI for report
utilities; however, the packages in this group contain
procedure calls to retrieve and update data in the
database. The package that calls MMI report utilities
for formatting the CSU specific report was not unchanged.

5. The Database Support box represents an interface layer to
the Database Access packages generated by the XDB module
compiler. These packages were modified extensively in
the previous subtask (refer to Section 2.1.2) and,
therefore, require only minor changes.

12

SAMeDL.TR.10.15 Sep 92

2.2.1 Approach

The project team used the following approach to redesign the two

CSUs:

1.

Analyze the data requirements to identify objects or
specific data groups. For example, data identifying a
soldier, such as SSN and name, compose a Soldier object.
The data identifying a Unit (i.e. UIC and name) are
attributes of the Unit object.

Build SAMeDL domains and support packages around each
object. For each object, a SAMeDL definition module is
written to declare the attribute domain of the object.
A corresponding SAMeDL abstract module is written to
provide all database operations regquired to use the
object. An example of the definition and abstract
modules written for the Unit object i3 shown in Figure
2.5.

Modify the database schema to represent the real world.
Where appropriate, the project team changed database
columns to allow null values. The project team then
created a SAMeDL schema module to match the new database
schema. An example of the schema module is shown in
Figure 2.6 on page 16.

Compile SAMeDL modules. For each definition module, the
SAMeDL. compiler generates an Ada specification package
(e.g. Unit_Def) in which derived types are declared for
each domain. Additionally, the SAMeDL compiler creates
a set of Ada packages (e.g. Unit_Abs specification and
body) for each abstract module. This set of Ada packages
is the abstract interface defined in the SAME
architecture. In the XDB version of the SAMeDL compiler,
a third set of packages (actually generated by the XDB
module compiler) is required to implement the database
calls in the abstract module. This third set of packages
becomes the concrete interface in the SAME architecture.

Redesign and modify application layer. The project team
identified several goals in redesigning the application.

a. Replace weaker subtypes in the Types package with
SAMeDL derived types. The objectives of this goal
are to remove the redundant type declarations and
enforce compiler time checks through derived
limited private types.

b. Hide implementation details of the Data Stores by

13

SAMeDL.TR.10.15 Sep 92

definition module UNIT_DEF is

domain UIC_Domain is new SQL_CHAR (Length = > 6);
domain UNAME_Domain is aew SQL_CHAR (Leogth = > 60);
domain UNIT_ITEM_COUNT_Domain is new SQL_INT;

sxception Record_Not_Found;

record UNTT_INFO_RECORD is
UIC : UIC_Domain;
UNAME : UNAME_Domain;

ead UNTT_INFO_RECORD;

ead UNTT_DEF;

«lrefersncs UNTT_DEF
~!referencs REMOVAL_DEF

~!refersnce DEMO

with UNIT_DEF; use UNIT_DEF;

with REMOVAL_DEF;

abstract module UNTT_ABS is
authorization DEMO

record COUNT_RECORD is
Number : UNIT_ITEM_COUNT_Domain;

ond;

cursor UIC_Cursor for

select UIC,
UNAME

from UNTIT

order by UNIT.UIC;

procedure Gat_Attached Unit_lnfo
(With_SSN : Removal Def.SSN_Domain) is

select UNTT.UIC,
UNAME

into UNTT_INFO : UNIT_INFO_RECORD

from ATTACHMENT, UNIT

whers (ATTACHMENT.SSN = With_Sea and
ATTACHMENT.RSN ATCH = ‘A") snd
UNIT.UIC = ATTACHMENT.UIC;

procedure Get_Curreat_Unit_lafo
(With_SSN : Removal_Def.SSN_Domain) is

select UNTT.UIC,
UNAME

isto UNTT_INPO : UNTIT_INFO_RECORD

from CURR_ASSIGNMENT, UNIT

where CURR_ASSIGNMENT.SSN = With_Sen md

procedure Count_Units is

select UNIT_ITEM_COUNT _Damasin(coust(*))
into Number_of_items : COUNT_RECORD

UNIT.UIC = CURR_ASSIGNMENT.UVIC;

eod UNIT_ABS;

from UNIT;

Figure 2-5 Definition and Abstract Modules for Unit Object

encapsulating Data Stores within support packages.
The objective of this goal is to utilize
information hiding and to give the design a more
"object-oriented" flavor.

Retain strong data typing up to the point where the
MMI controls the data. The objective of this goal
is to process the data using the operations defined
for each data type and take advantage of compiler-
time, rather than run-time, error detection.

The resulting SAMeDL redesign architecture is shown in Figure 2-7.

A comparison of the SIDPERS architecture (refer to Figure 2-2) and
the redesign architecture (shown in Figure 2-7) indicates how the
first two goals of the redesign were met.
packages generated by the SAMeDL compiler,

With the Derived Types
the previous Types

14

SAMeDL.TR.10.15 Sep 92

~Ireference UNTT_DEF
~Ireference REMOVAL_DEF
with UNIT_DEF;

with REMOVAL_DEF;
schema module DEMO is
table SOLDIER is
SSN nctsull : REMOVAL_DEF.SSN_Domaia,
NAME_IND : REMOVAL_DEF.NAME_IND_Doemain,
PERM_GR_AD : REMOVAL_DEF.PERM_GR_AD_Domsin
sad SOLDIER;
table CURR_ASSIGNMENT is
SSN not oull : REMOVAL_DEF.SSN_Domein,
uic : UNTT_DEF. UIC_Domain
ead CURR_ASSIGNMENT;
table ATTACHMENT is :
SSN oot aull : REMOVAL_DEF.SSN_Domaia,
uic : UNTT_DEP.UIC_Domain,
RSN_ATCH : REMOVAL _DEF.RSN_ATCH_Domein
cad ATTACHMENT;
wbie UNIT is
UIC notnall : UNIT_DEF.UIC_Domsin,
UNAME : UNTT_DEF.UNAME_Domin
end UNIT;
ead DEMO;

Figure 2-6 Sample Schema Module for Redesigned Application

packages becomes redundant. The Data Store packages are replaced
with objects of SAMeDL derived types declared within the package
bodies of the Field Support packages. Access to the Data Stores is
gained through services (i.e. Get_Object, Put_Object) already
provided by the Field Support procedures. These procedures are
modified to reference the local objects rather than the objects
declared in externmal package specifications. The other
functionality provided by the Field Support packages is retained so
that the Screens packages require no modifications.

The project team modified the Database Support package to reference
the procedures in the Abstract Interface (generated from the
abstract modules) rather than the Database Access packages.

The third goal is not as easy to attain. The project team
determined that the point at which the MMI controls the data is
just prior to calling the Field Support procedures and prior to
calling report utilities in Reports packages. When the Screens
packages call the Field Support procedures the data value is passed
as a string type. Conversion to derived types is handled by the
Field Support procedures, thus hiding the conversion details and

15

SAMeDL.TR.10.15 Sep 92

MM]
ﬁ'g
Application
Reports Driver Screens
Databese Abstract Interface field -
Support “seasssencasccannee Support
. Derived . Data
. Types # [ececccccccces Stores
SAMeDL SAMeDL . .
Modules Compiler . .
: Abstract
Packages #
saL Concrete Interface
Module . Database
Compiler Access * | .
Legend
AP1 .
Developed by
SIOPERS-3
* Generated by the
Module Compiler
DBMS # Generated by the
SAMeDL Compiler
e « ¢ Shows dependencies
- |ndicates control
flow

Figure 2-7 The SAMeDL Redesign Architecture

1lé

SAMeDL.TR.10.15 Sep 92

isolating the calling packages from any future changes to data
types.

2.2.2 Observations

SAMeDL must be the basis for design. Once the database design has
become stable, the SAMeDL modules can be designed and written.
Database stability is the key to the success of implementing
SAMeDL. Because the application layer is built on top of the
SAMeDL data types, any change in the database schema resulting in
a change to SAMeDL types requires modifications to and
recompilation of the application layer.

For example, changing a not null column to a null-bearing column in
the database would require a modification to the corresponding
domain in the SAMeDL definition module. The new definition module
would be recompiled through the SAMeDL compiler, generating a new
Ada specification. The data type generated would become a limited
private type, and some operations (i.e. the Ada ":=" operator) on
the not null type would become invalid.

One solution to this problem is to provide an additional layer of
abstraction between the application and the SAMeDL abstract
interface. In our redesign, the Database and Field Support
packages, in essence, provided this layer. However, the cost of
this solution is additional processing and response time.

The SAME architecture supports an object-based design. The data
requirements of the application were analyzed to identify object
classes or data types that could be grouped into packages. In
addition to conversion functions, Field Support packages were
modified to hide the objects (designated as Data Stores) needed for
temporary storage of data.

SAMeDL is as complex to use as Ada. It is a hybrid of Ada and SQL,
offering the best features of Ada and allowing the user to specify
database services in SQL-like statements. The user must,
therefore, be proficient in both Ada and SQL, while learning a
third programming medium. Program managers must consider training
or learning curve impacts on the development of SAMeDL
applications.

2.2.2.1 Stromng Typing

The success of retaining the SAMeDL strong data typing in the
application layer depends on how tightly interleaved the user
interface is with the application design. The design of the
SIDPERS-3 application is dictated by the SIDPERS-3 MMI. As seen in
the first stage of this pilot project, inserting SAMeDL without
modifications to the SIDPERS-3 application proved to be of no

17

SAMeDL.TR.10.15 Sep 92

worth. This was largely due to the interface design where data is
passed as string objects. In the redesign (second stage of the
project), the application layer was modified to use the SAMeDL
derived types. Functions to convert SAMeDL types to string types
were created in the Database and Field Support packages to
accommodate the MMI.

2.2,2.2 Error Handling

Any SQL statement executed by the database has the potential for
failure. Frequently, an application is designed to catch the
predictable errors (e.g. no record found) and forgets to check for
the unpredictable, unrecoverable failures (e.g. disk error). The
SAME methodology handles unexpected errors, while providing a
flexible treatment of database errors that allows the application
to define errors that are acceptable and expected.

The application programmer defines the database errors that are
tolerable in the definition modules by declaring a status map, as
shown in Figure 2-8.

exception Data_Definition_Does_Not_Exit;
exception Insufficient_Privilege;

coumeration Operation_Status is (Disk_Error, Data_Coavertion_Ervor,
lovalid_SQL _Ststement, Not_Found,
Okay);

status Operation_Map named Result_Of Operation
uses Operation_Status is (

<600 .. 659 => Disk_Error,

-500 .. -599 => Data_Coaversion_Esror,

-300 .. 499 => lavalid_SQL_Statement,

-101, -110, -113 => raise Data_Definition_Docs_Not_Exit,
25 =-> raise Insufficient_Privilege,

0 => Okay,

100 => Not_Found);

Figure 2-8 Sample Status Map Declaration

As seen in Figure 2-8, the declaration of the status map may
include raise statements that raise exception handlers for those
errors that are unpredictable or unrecoverable. Expected errors
are mapped to members of the enumeration type, Operation_Status.

18

SAMeDL.TR.10.15 Sep 92

The negative integers are values of the ANSI standard variable,
SQLCODE. The status map provides a direct correlation between the
returned SQLCODE and application-defined error conditions. It
should be noted that the standard specifies only two return values:
0 for "success" and 100 for "row not found." Any other SQLCODE
must be a negative integer and is implementation-defined. 1In other
words, the negative integers differ between DBMSs, and declaration
of the status map should be isolated for portability reasons.

An application is not required to declare a status map. In this
case, upon return of a database error (negative SQLCODE), the
procedure Process_Database_Error, declared in package
SQL_Database_Error_Pkg, is called to raise the exception
SQL_Database_Error. The application should provide an error
recovery routine for handling the SQL_Database_Error exception.

2.2.2.3 Null Eandling

Declaring domains as null-bearing increased the complexity of
programming the application code, thus decreasing the productivity
of the application programmer. The SAME support packages (e.g.
SQL_Char_Pkg) provided the operations necessary for the limited
private types; however, the application programmer should be
trained on the effective use of the support packages. The
restrictiveness of the limited data type can be circumvented;
however, the reliability and maintainability of the program is
lost.

2.2.3 Multiple Target Databases

Targeting the application across databases required minimal effort
and changes. There are three areas that required modifications:

1. CONNECT statements;
2. Database status map; and
3. The transfer of data from one database to another.

The first area involves modifications to CONNECT statements. As
shown in Figure 2-9, the CONNECT statement is slightly different
across the four databases.

The second area is modifications to the status map declared in the
definition module to handle database errors. As discussed in
Section 2.2.2.2, the status map must be modified to reference the
new DBMS codes, if an application chooses to map application-
defined errors directly to DBMS-specific return codes

19

SAMeDL.TR.10.15 Sep 92

Informix

CONNECT Datsbase_Nams;

Oracle

CONNECT User_ID Password {USING Database_Name];

Sybasge

CONNECT SERVER Server_Name;
CONNECT Database_Name;

Figure 2-9 CONNECT Statements

The third area is transferring data from one database to another.

This process involves the following steps:

1. Create the database and table using either SQL scripts or

the appropriate user interface.

2. Export the data from the source database to a format

acceptable to the target database.

3. Import or load the data into the target .database.

The project team created script files that contain standard data
definition language for creating the database, creating tables and
indexes, and granting the correct privileges to user accounts.
Both the Informix and Oracle database provide utilities for loading
data from ASCII files. The use of script files and DBMS-supplied
utilities made the loading of the Informix and Oracles database

easy.

20

SAMeDL.TR.10.15 Sep 92
3.0 TASK 2 - TOOLSET DEVELOPMENT

The purpose of this section is to document the technical activities
associated with the SAMeDL Toolset Development task. This section
is organized as follows:

1. Section 3.1, SAMeDL Module Manager Development, covers
the SAMeDL Module Manager development effort.

2. Section 3.2, SAMeDL Compiler Upgrade, documents the work
associated with upgrading the existing Intermetrics
SAMeDL compiler to support the most current definition of
SAMeDL.

3. Section 3.3, SAMeDL Compiler Retarget, reports on the
technical activities associated with retargeting the
Intermetrics SAMeDL compiler backend to the four
supported DBMSs.

4. Section 3.4, Other Support Tool Development, covers the

T effort associated with developing additional tools, if

any, other than the basic compiler and the Module
Manager.

3.1 SAMeDL Module Manager Developneﬁt
3.1.1 Design

Intermetrics successfully performed initial prototyping work on the
Sun4 as a feasibility study for the SAMeDL Module Manager design.
The top level design document is incorporated into this technical
report as Appendix B. The objective of the Module Manager is to
provide the user with reasonable management of the written SAMeDL
modules and the Ada interfaces generated by SAMeDL. The Module
Manager implementation will be simple, and as portable as possible.

From the user’s point of view, the interface is line oriented (like
Verdix). Functionality includes library creation/ deletion, SAMeDL
information listings (i.e., time/date of compilation, dependencies,
associated host files for input source code and generated
interfaces), and Ada compilation ordering information for the
generated Ada interfaces. A programming interface has been
developed for use by the SAMeDL compiler to aid in separate
iggpilation and information retrieval/generation from/to the
rary.

Time and resources permitting, Intermetrics will add "nice to have"

features discovered during testing. These features or
modifications fall under two categories:

21

SAMeDL.TR.10.15 Sep 92

1. Information Presentation. The way library information is
presented to the user may be enhanced.

2. Convenience. Intermetrics may add functions that
automate user activities based on information already
managed and available. For example, archives could be
generated from the created object files (where concrete
interfaces take the form of C/ESQl). Additionally, shell
scripts could be created that automate the compilation of
the generated Ada packages.

3.1.2 Code

Intermetrics has developed and integrated the Module Manager into
the SAMeDL compiler. The foundation for this work is heavily based
on the prototype of the Module Manager developed by Intermetrics
during the design phase. The Module Manager is written in Ada and
developed on a Sun4 workstation using the Verdix Ada Development
System (VADS). Following initial testing on the Sun4, the Module
Manager has been successfully ported to the 386 computer under
Interactive UNIX and the Alsys compiler.

3.1.3 Test

Intermetrics performed initial testing of the Module Manager on
both the Sun4 and the 386 computer. With respect to the compiler
interface, SAMeDL modules with miscellaneous interdependencies were
successfully processed by the compilér. The related information
generated by the Module Manager for the library was then manually
examined, either through the debugger or by the Module Manager user
interface. To test the user interface functions, SAMeDL modules
and related generated interfaces were entered into a SAMeDL
library. The user commands were successfully tested using various
combinations of options and parameters.

Informal testing will continue on the Module Manager as part of the
development and testing of the SAMeDL compiler.

3.2 SAMeDL Compiler Upgrade
3.2.1 Design

The SAMeDL compilers were developed by Intermetrics from an
existing compiler. The original compiler was targeted to the
October 1991 version of SAMeDL. The SAMeDL compilers for the Pilot
Project are targeted to the November 1991 version of the language,
developed primarily at SEI.

An incremental approach was taken to upgrade the SAMeDL compiler
from the October to the November version of the language. The

22

SAMeDL.TR.10.15 Sep 92

additional features were partitioned into three logical sets. The
first set of upgrades was implemented for the delivery of the
Informix SAMeDL compiler. The second compiler was implemented for
XDB and included both the first and second sets of upgrades. The
Oracle and Sybase SAMeDL compilers implemented the full November
1991 version of the language.

The incremental approach to upgrading the SAMeDL compiler was
advantageous to both the Shadow Task and the toolset development
task of the Pilot Project. From the point of view of the Shadow
Task, the incremental upgrades meant that the first SAMeDL SDE
delivery could be made soon after contract award, enabling
STATISTICA to start using the SAMeDL toolset as early as possible.
By maximizing the time STATISTICA had to use the toolsets, the
feedback to Intermetrics was integrated into subsequent compilers,
resulting in a better set of SDEs for the final delivery.

3.2.2 Code

Coding of the SAMeDL compiler front-end upgrades is performed on a
Sun4 with a Verdix Ada compiler. Once the upgraded code is tested
on this development platform, the improved compiler is ported and
tested on the delivery platform. Compiler back-end improvements
and DBMS retargeting is performed on the Sun4 development platform
and then ported to the delivery platform to test using the target
DBMSs. Use of the Sun4 development platform and the PC-386
delivery platform in this way enables both front-end and back-end
upgrades to be performed simultaneously.

All source code, including the SAMeDL compiler source code, the
Module Manager source code, and the SAMeDL standard packages is
maintained in a central repository on the Sun4 platform under
strict configuration management policies. At delivery time, the
configuration management system registers a release of the current
code, which is used to build the delivery executables.

3.2.3 Test

Acceptance testing of the SAMeDL compiler is based on the SAMeDL
Development Environment Test Plan and Intermetrics’ version of the
SAMeDL Language Reference Manual (ILRM). The Test Plan is
incorporated in the technical report as Appendix C. The ILRM is
incorporated as Appendix D. The Test Plan contains procedures for
testing the Module Manager and source code for the compiler test
suite. A cross reference of test procedures to ILRM sections is
provided in Chapter 4 of the Test Plan.

Testing of the SAMeDL compiler is divided into three basic types:

23

SAMeDL.TR.10.15 Sep 92

1. Correct Tests. This set of test procedures verifies that
the SAMeDL compiler recognizes and processes proper
syntactical and semantic constructs. Proper syntactical
and semantic constructs are defined by the ILRM.

2. End-To-End Tests. This set of test procedures verifies
that the output of the SAMeDL compiler functionally (as
defined by the ILRM) interfaces with the target database.

3. Error Tests. This set of test procedures verifies that
the SAMeDL compiler identifies improper syntactical and
semantic constructs (as defined by the ILRM) as errors.

3.3 SAMeDL Compiler Retargets

Once upgraded, the SAMeDL compiler will be retargeted to four
DBMSs: Informix, XDB, Oracle, and Sybase. To prioritize the
compiler retargets, Intermetrics:

1. Identified commonality across the programming interfaces
provided by each DBMS vendor. Informix, Oracle, and
Sybase have a standard C with embedded SQL (C/ESQL)
programming interface. XDB has an Ada/SQL module
language interface, and does not provide the C/ESQL.
Since C/ESQL is the interfacing technique currently used
in Intermetrics compiler, Intermetrics will retarget one
of the three DBMSs that generates C/ESQL for the concrete
interface. Once this is done, the other two DBMS can be
retargeted quickly.

2. Targeted the DBMSs that are most widely used to promote
use and broad availability of SAMeDL across the Ada
community. XDB is a product primarily used by the Army;
the remaining three DBMSs are commercial products that
are widely available to academia, government, and
industry.

Using the above rationale, it is clear that the DBMSs can be
partitioned into two distinct groups:

1. Group A - Informix, Oracle and Sybase

2. Group B - XDB.
If Intermetrics implements one DBMS from each group first, it is
reasonable to assume that the SAMeDL compiler can be retargeted to

all four DBMSs. Intermetrics will retarget the SAMeDL compiler for
Informix first, followed by XDB, and then either Oracle or Sybase.

24

SAMeDL.TR.10.15 Sep 92
3.3.1 Informix

The front-end upgrade and back-end retarget of the SAMeDL compiler
to the Informix DBMS proceeded smoothly through its completion and
delivery on March 13, 1992 to STATISTICA. The Informix DBMS
provides a stable and reasonably complete C/ESQL interface. Thus,
a minimal number of extensions to SAMeDL were needed to provide a
satisfactory SQL interface to Informix.

The SAMeDl compiler currently implements all of the SAMeDL
capabilities described in Appendix D, SAMeDL Language Reference
Manual.

3.3.2 XDB

The SAMeDL compiler targeted to the XDB/PC-386 platform was
delivered to STATISTICA on May 7, 1992. Several differences
between Informix and XDB contributed to making the retarget to XDB
more technically challenging than the Informix retarget.

The Computer Associates XDB DBMS provides an SQL-Ada module
compiler. The SQL-Ada module compiler was chosen as a back-end
target for the SAMeDL compiler for XDB. The modification of the
compiler back-end from the embedded C/SQL architecture to the SQL-
Ada module compiler went relatively well considering the magnitude
of the change.

Early in the retargeting process, Intermetrics discovered software
problems in the XDB SQL-Ada module compiler that would
significantly limit the functionality of the XDB SAMeDL compiler.
The most severe problems were corrected by Computer Associates.
Some problems involve lack of conformance to SQL and SQL module
language standards, as defined by FIPS PUB 127-1. Workarounds to
these conformance problems are suggested in Appendix F, SAMeDL User.
Manuals. When workarounds were not appropriate, Intermetrics added
semantic checks to the SAMeDL compiler to warn users that certain
features of the language are not adequately supported by XDB.

The XDB SAMeDL compiler implements all of the SAMeDL language
described in Appendix D, SAMeDL Language Reference Manual.

3.3.3 Sybase

The Sybase SAMeDL compiler targeted to the Sun/Sparc platform was
delivered on July 7, 1992 to STATISTICA. The Sybase SAMeDL
compiler is targeting a hardware/software platform that is
different from the platform for the Informix and XDB SAMeDL
compilers. Also, the SDE for Sybase is the first delivery to
support a complete front-end compatible with the November 1991
version of the SAMeDL LRM (S].

25

SAMeDL.TR.10.15 Sep 92

As the time to commence the Sybase retarget effort approached,
Intermetrics discovered that Sybase no longer provides a C/ESQL
product for the PC-386 platform. The decision to use a Sun/Sparc
platform for the Sybase SDE was made for three major reasons:

1. Intermetrics has a Sun/Sparc platform at their facility
on which they could do the work, and to which they could
provide STATISTICA access in support of the Shadow Task.

2. Sybase provides a C/ESQL product for the Sun/Sparc
platform.

3. Intermetrics felt that use of this platform would enable
the contract to proceed on schedule, whereas choosing an
alternative compiler architecture or DBMS might not.

The full configuration for the Sybase SDE consists of a Sun/Sparc
machine running SunOS 4.1.1, the Verdix Ada Compiler Version 6.0.3c
and the Sybase DBMS Version 4.8 with C/ESQL.

The Sybase retarget proceeded smoothly, with only minor problems
discovered in using the Sybase DBMS. Sybase restricts the use of
a cursor update statement to several qualifications, such as having
a unique index on the table column to be updated. Consequently,
attempting to use the cursor update statement without meeting the
Sybase prerequisites will result in a Sybase error either at run-
time or during the final phase of compilation by the Sybase C/ESQL
precompiler. Intermetrics reported this problem to the Sybase
technical support staff.

To be compatible with the new platform, some commands generated by
the Module Manager had to be altered. For example, the
sde.mkscript commands were changed to emit a script compatible with
the Verdix Ada compiler. The changes to the Module Manager were
minor and were documented in the Sybase SDE User Manual.

The complete front-end supports all features of SAMeDL, including
user-defined base domains. Some of the new capabilities of the
Sybase SAMeDL compiler differ from the SAMeDL defined in the
November 1991 version of the LRM. The correct use of all SAMeDL
features, as implemented by Intermetrics, is found in Appendix D.
Further clarification of implementation-dependent features is found
in the Sybase SDE User Manual, in Appendix F.

3.3.4 Oracle

Intermetrics delivered the SAMeDL compiler targeted to the
Oracle/PC-386 platform on August 7, 1992 to STATISTICA.
Intermetrics produced the Oracle SAMeDL SDE during 1 month of
intense activity.

26

SAMeDL.TR.10.15 Sep 92

The first three deliveries, with accumulative front-end upgrades,
were performed during 2-month intervals. The Oracle SDE required
no front-end upgrade and was purely a retarget. The inherent
portability of the SAMeDL compiler architecture enabled this
retarget to be performed in one-half the time of the earlier
retargets. In addition to the actual retarget, the l-month time
included updating the documentation and packaging the media.

One reason that the SDE for Oracle was built so quickly is that the
Oracle DBMS has few program errors. The only SAMeDL feature not
supported by Oracle is the null-bearing host variable in the SQL
where clause. This implementation-dependent feature is documented
in the Oracle SDE User Manual, in Appendix F.

3.4 Other Support Tooi~Development

Intermetrics recently identified two tools that may serve as an aid
to the Shadow Task:

1. A SAMeDL Language Sensitive Editor (LSE).
2. A SAMeDL syntax checker.

Intermetrics implemented an early version of the LSE for the Sun4
based on the October 1990 SAMeDL Language Reference Manual. An
effort will be made to upgrade and port the LSE to the 386
computer. The LSE utilizes emacs with appropriate e-lisp bindings
based on the SAMeDL grammar.

The syntax checker will be incorporated into the SAMeDL compiler.

Until a completed SAMeDL compiler is available, the syntax checker
will help in the early development of the Shadow Task.

27

SAMeDL.TR.10.15 Sep 92

APPENDIX A

Acronyms and Bibliography

A-1

AIRMICS

AJPO .
ANSI
APSE
ATIP
COTS
csu
C/ESQL
DBMS
DoD
ILRM
LOC

MIS

MMI

SAME
SAMeDL
SEI
SIDPERS-3

STAMIS

VADS

SAMeDL.TR.10.15 Sep 92

ACRONYMS

Army Institute for Research in Management
Information, Communication and Computer Science

Ada Joint Program Office

American National Standards Institute
Ada Programming Support Environment
Ada Technology Insertion Program
Commercial Off The Shelf

Computer Software Unit

C with embedded SQL

Database Managemenﬁ System
Department of Defense

Intermetrics’ SAMeDL lLanguage Reference Manual
Lines of Code

Language Reference Manual

Language Sensitive Editor

Management Information System

Man Machine Interface

SQL Ada Module Extensions

SQL Ada Module Description Language
Software Engineering Institute

Standard Installation Division Personnel System -
Third Release

Standard Army Management Information System

Verdix Ada Development System

(1)

[2]

[3]

[4]

(5]

[6]

(7]

SAMeML.TR.10.15 Sep 92
BIBLIOGRAPHY

Database Language - SQL with Integrity Enhancements. American
National Standards Institute, X3.135-1989.

Database Language - Embedded SQL. American National Standards
Institute, X3.168-1989.

Graham, Marc H., "Down in the Details, Lessons Learned in
Interfacing Ada and SQL." ACM Tri-Ada '90 Conference,
Baltimore, MD, December 1990.

Graham, Marc H., "Guidelines for the Use of the SAME."
Software Engineering Institute, CMU/SEI-89-TR-16.

Graham, Marc H., "SQL Ada Module Description Language,
Intermediate Version 3." 21 November 1991.

LeClair, Allison and Susan Phillips, "A Prototype
Implementation of the SQL Ada Module Extension (SAMe) Method."
ACM Tri-Ada ‘90 Conference, Baltimore, MD, December 1990.

Reference Manual for the Ada Programmzng‘banguage Ada Joint
Program Office, 1983.

SAMeDL.TR.10.15 Sep 92

APPENDIX B

SAMeDL Development Environment
Module Manager Top Level Design

SAMeDL Development Environment
Module Manager Top Level Design

/

Intermetrics, Inc.
6-January-1992
IR-VA-008-1

Published by
Intermetrics, Inc.
733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under the clause at DFARS 252.227-7013 (Oct. 1988).

Table Of Contents

Chapter 1 Purpose 1
Chapter 2 Overview 2
Chapter 3 Data Structures 5
3.1 Physical File Structure 5
3.2 Intemal Representation “ 5
3.3 Data FOMAL...cieeicccessensesnsnacsssessesssssaesssnsssasssssaasessssnasasnnss reseensessane 6
Chapter 4 Operations 7
4.1 Operations on Disk File......cuecicceinricesineeaeseensssescssrenssesasnssasacsusnosnonss 7
4.2 Operations on Internal REPresentationccceevvcensecsecssssasasscesncsncannne 7
Chapter § Module Manager Files 8
Chapter 6 User Interface 9
Appendix A Package Specifications 10

Appendix B Module Manager Commands 21

SAMeDL Development Environment - Module Manager Top Level Design

Chapter1 Purpose

The purpose of this document is to describe the module manager for the SAMeDL Development
Environment (SDE). A top level description of the SDE module manager will be provided, as
well as descriptions of the user-SDE interface and the compiler-SDE interface.

The remainder of this document is organized as follows:

Chapter 2, Overview, gives a brief overview of the SDE Module Manager.

Chapter 3, Data Structures, outlines the physical disk data representation, internal
representation and the data format.

Chapter 4, Operations, documents the supported operations on the disk file and the
internal representation.

Chapter 5, Module Manager Files, lists the files present in the SDE Module
Manager.

Chapter 6, User Tnterface, documents the user interface commands for the user to
interact with the SDE Module Manager.

Appendix A, Package Speczﬁcanons, presents the Ada package specifications for the
interface routmes and the definitions of the data structures.

Appendix B, Module Manager Commands, includes manual pages for the user
interface routines.

Intermetrics, Inc. 1

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 2 Overview

The SDE module manager maintains the current dependency information for a SAMeDL design
in a library; thus it is similar to an Ada library manager. The SDE module manager also acts as
the manager of the repository (the library) for the SAMeDL source files containing the units and
the files generated by the SAMeDL compilaton.

The SDE module manager provides functionality to interact with both the user and the SAMeDL
compiler. The compiler SDE-interface is in the form of procedure calls in the Ada programming
language that the compiler can use, and the user SDE-interface is in the form of commands the
user can type at the operating system prompt to execute various procedures. Operations the user
might perform, for example, would be the creation and deletion of the SDE library, the
generation of lists of units/files in the library, etc. The compiler would use SDE routines to add
new information to the library as it compiles units, to extract dependency information about
units, etc.

In a typical scenario, the SDE library is created by the user with the appropriate user interface
command. Subsequent compilation of SAMeDL units modifies the library via the SAMeDL
compiler SDE-interface. The user then uses other user SDE-interface commands to get
information out of the library as well as modify the information present in it.

At the start of a SAMeDL compilation for a unit, the SDE data file is read into the compiler's
internal data structures. Functions provided by the SDE module manager are used to perform
this step. The use of internal data structures facilitates the quick retrieval of dependency
informaton as well as the storing of new dependency information.

The internal representation of the library is wee-like, with each node in the tree corresponding to
a file in the SDE library and containing information such as the file dependencies, creation time,
related library files, etc. During compilation, new nodes may be added to this internal tree and
new dependency arcs created to connect these nodes to previously existing nodes. The intemal
data structures are written to the SDE data file from the compiler at the end of each compilaton
using additional functions provided by the SDE module manager.

For example, consider the following SAMeDL code outlined below in Example 1.

2 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

definition module D Is

ond‘ D;

with D; use D;
schema module S Is

end' S;

with D; use D;
abstract moduie A is
authorization S

end. A;

Example 1. SAMeDL Source Example.

The example contains a SAMeDL Definition Module D, 2a SAMeDL Schema Module S and a
SAMeDL Abstract Module A. The compilation of the definition module D generates an Ada
package specification named D_.a, the compiladon of the schema module S generates no new
files and the compilation of the abstract module A generates an Ada package specification named
A_.a, an Ada package body named A.a, an embedded C/SQL source file A.ec, and then
eventually, an expanded C file A.c and an object code file A.o. The library would like Figure 1
after the compiladon is finished.

Intermetrics, Inc. 3

SAMeDL Development Environment - Module_ Manrager Top Level Design

Definstion Module D
Node Number: 0

Ada Package Spec. D_a Schema Module S Abstract Module A
Node Number: 1 Node Number: 2 Node Number: 3

(M=) (e o ¢ el bl
(st)

. Unit Name Node Number Cares About Cared About By

(Node Numbers) (Node Numbers)

definition module D 0 None 1,2,3
ada package spec D_.a 1 0 None
schema module S 2 0 3
abstract module A 3 0,2 4,6,7,8
ada package spec A_.a 4 3 5
ada package body A.a 5 4 None
embedded C/SQL A.ec 6 3 None
expanded C A.c 7 3 None
object code A.o0 8 3 None

Figure 1. State of SDE Library After Compilation of Example 1.

4 Intermerrics, Inc.

-

SAMeDL Developmen: Environment - Module Manager Top Level Design

Chapter 3 Data Structures

The abstract data structure used by the SDE is wee-like, with each node on the ree corresponding
to a SAMeDL unit or to a generated source file. Each node contains information about its
dependencies on other nodes, the time it was created, the type of node, the related files, etc. This
data structure is saved in a physical file in the library and also has an internal image that is used
by the compiler and the user interface routines.

3.1 Physical File Structure

The physical file contains a series of records, each record containing the data for a single node in
the internal representation of the dependency tree. The informaton in the disk file is in text
format, that can be read/written using routines provided by the SDE module manager. File
names for the files that the compiler generates are created using character prefixes and index
numbers that are also saved in the disk data file.

3.2 Internal Representation

The internal representation-of the dependency information is tree-like. Each node in the tree
represents a file in the SAMeDL system, and has information about all nodes that are dependent
on it and nodes that it depends on (called CaredAboutBy and CaredAbout arcs respectively).
Each node also contains the time it was created, the external source file it was created from, the
name of the source file saved in the library and the name of the library file that the generated
code resides in.

Nodes are given a node numbers that uniquely identify them. This practice facilitates saving the
tree to the designated disk file and reading it back because pointers do not need to be included in
the disk file. It also facilitates the use of uniform data structures for the internal répresentation
because variable length records do not need to be used. Instead, lists are maintained off each
node that contain the node numbers of the nodes that the node depends upon, or is dependent
upon.

Intermetrics, Inc. 5

SAMeDL Development Environment - Module Manager Top Level Design

3.3 Data Format

Both the records in the disk data file and the nodes in the internal representation have the same
fields. The fields are:

Node Number number of the node that specifies the unit
Node Type the type of file this node points to
Unit Name . - name of the compiled unit
Time Entered time the unit was entered into the library
Library File name of file saved in library
External File pathname of file that the node was generated from
Cares About Arc Num number of cares about arcs from this node
Cares About Arc List - list of cares about arcs from this node
Cared About By Arc Num P number of care about arcs to this node
- Cared About By Arc List list of care about arcs to this node

The records in the disk data file are written out in text form, one after the other with a special
character separating each node. The disk data file also contains the current suffix numbers for the
different types of files present in the library (described in Chapter 6).

In the internal representation, each nodg corresponds to a single record in the disk data file. New

nodes may also be added during compilation by the SAMeDL compiler and their format is the
samne.

6 . Intermetrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 4 Operations

This sertion describes the operations that are available to the compiler and the user interface
programs for interacting with the two data representations (disk file, internal tree representation)
that comprise the module manager.

All the procedures described below return a status variable signifying whether the procedure
succeeded or failed. This parameter will not be explicitly mentioned below.

4.1 Operations on Disk File

The disk file that the data resides in is a pure text file, a format that can be changed easily if the
current format is too cumbersome for the executable programs. When any process (compiler,
user-interface program) communicates with the module manager, the library has to be locked.
This locking prevents other instances of the SAMeDL executables that modify the library from
modifying the data structures in use by the current SAMeDL process that has locked the library
data file. The disk file is then read into the internal representation at the request of the current
SAMeDL process that is modifying/reading the library, and then eventually written out after the
process is done with its work, The library has to be unlocked before any other SAMeDL process
may access the module manager library.

The syntax of the operations, including the names, parameters, errors generated, etc. may be’

found in the package specification for the package Disk_IO in Appendix A.
4.2 Operations on Internal Representation
The internal representation is a structure containing the nodes corresponding to the files in the

SDE module manager library. The nodes are in the form of a tree, each node containing pointers
to all nodes that it depends upon as well as pointers to nodes that depend upon it. Operadons are

provided to add nodes to this tree, create arcs connecting nodes, deleting nodes from the wree and

walking the tree in breadth-first and depth-first fashion.

The operations for the manipulation of the internal representation are distributed over two
packages. The first is the package Nodes_Package that contains the lower level operations that
can be done¢ on individual nodes. The other is the package Tree_Package that contains the
operations that can be done on groups of nodes as they are connected. The syntax of the
operations, including the names, parameters, errors generated, etc. may be found in the package
specifications for these two packages in Appendix A.

Intermetrics, Inc. 7

SAMeDL Development Environment - Module Manager Top Leve! Design

Chapter 5 Module Manager Files

The file names in the following are Unix operating system dependent but can be changed easily
for other operatng systems.

The SAMeDL library contains the following files in it:

samedl.lib directory of SDE module manager library

samedl.dat file name of net data file

samedl.lock lock file for SDE module manager library
It also contains the files that are generated by the SAMeDL compiler during the compilation of
units. The filenames are in the following format where xxxxxxx corresponds to a number that is
saved in the SDE module manager disk data file and is incremented each time a new file of a
type is created. The number for each type of file is maintained independent of the others. The
numbers may not be reused.
The first three files (Dxxxxxxx, Sxxxxxxx, Axxxxxxx) contain the modules that are extracted by
the SAMeDL compiler from the user specified source file that is being compiled. They are pure
text copies of the source, but only contain the module specified unlike the user specified file that
may contain multiple SAMeDL modules in it.

The following files are saved in the module manager library:

Dxxxxxxx source file for definition module
Sxxxxxxx source file for schema module
AxxXXXXX source file for abstract module

Pxxxxxxx source file for Ada package specification

Bxxxxxxx source file for Ada package body
Exxxxxxx source file for embedded C file .
Cxxxxxxx source file for C file

Oxxxxxxx object file

8) Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 6

User Interface

The user interface command names are Unix operating system dependent but can be changed
easily. Further information about the command line options, arguments, defaulits, and errors for
the commands may be found in Appendix B.

sde.cleanlib
sde.creatlib
sde.list
sde.ls
sde.rm

sde.rmlib

Intermerrics, Inc.

reinitialize library directory

creates a new SAMeDL library

list units generated from a module

list compiled units

remove a SAMeDL source file or unit from a library

remove a SAMeDL library

SAMeDL Development Environment - Module Manager Top Level Design

Appendix A Package Specifications
The Ada package specifications for the SDE module manager follows:

- globals_.a -

-- contains the global constant declarations required
-- throughout the module manager

package Global_Package is

- Status Codes returned by functions/procédures
type StatusType is (StatusOk, StatusError);

Dir_Separator : constant String .= */";

Library_Dir : constant String .= "samedl.lib";
Database_File :constant String := "samed!.dat";
Lock_File : constant String := “samedl.lock”;

Current_Library : constant String-:= ".";
RM_Command : constant String := "rm -t
end Global_Package;

10

Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- disk_lo_.a -

- The disk file that the data resides inis a pure text file. When any
-- process (compiler, user-interface process) communicates with the
- module manager, the library has to be locked to other instances of
- the processes. This locking prevents the other processes from

- modifying the data structures in use by the process already in the
-- library. The locking and unlocking of the library is done using the
- procedures in this package. The disk file is read into the internal
- structures using the procedures in this package.

with Global_Package; use Global_Package; - Global types, constants
with Nodes_Package; use Nodes_Package; — Types, constants

package Disk_lO is

- LockLibrary(Status, LibraryPath) - creates a lock file in the

-- library if one does not already exist thereby prohibiting two

- people from moditying the library at the same time. This should

—~ be done at the very stast of processing a unit in the compiler.

- Parameters:

- Status - StatusOk if the procedure succeeds, StatusError otherwise
- LibraryPath -- pathname of the directory in which the moduie manager
- ' saves the data file. .

procedure LockLibrary(
Status :in out StatusType;
LibraryPath : in String);

- UnlockLibrary(Status) — delete the lock file opened by LockLibrary.
-- Frees the library for use by other users. This is the last thing

- that the compiler shouid do. No more modifications to the library
-- are allowed after an UnlockLibrary cail without domg another

- LockLibrary call.

- Parameters:
-~ Status -- StatusOk if the procedure succeeds, StatusEror otherwise

procedure UnlockLibrary(

Status :in out StatusType);
-~ ReadNodeFromKeyboard(Status, Node) -- reads a node from screen,
-~ For debugging purposes.
~ Parameters:
-~ Status - StatusOk if the procedure succeeds, StatusError otherwise
-~ Node - pomter to the node read in from the keyboard.

procedure ReadNodeFromKeyboard(
Status : in out StatusType;

Intermetrics, Inc. 11

SAMeDL Development Environment - Module Manager Top Level Design

Node :in out NodePtr);

-- WriteNode ToScreen(Status, Node) -- Writes a node to screen,

-- For debugging purposes.

-- Parameters:

- Status -- StatusOk if the procedure succeeds, StatusError otherwise
- Node -- pointer to the node to be printed on the screen.

procedure WriteNodeToScreen(
Status : in out StatusType;
Node :in NodePtr);

~ ReadDiskData(Status, LibraryPath, Trée) -- reads the disk data file
-- in the directory specmed by LibraryPath into a tree and makes Tree
-~ point to it.
-- Parameters:
-- Status -- StatusOk if the procedure succeeds, StatusError otherwise
- LibraryPath - path for the directory in which the module manager
- . saves the disk data fiie. -
- Tree - pointer to the root of the new tree created from reading
-~ the data in the disk data file. ,
procedure ReadDiskData(
Status :in out StatusType;
LibraryPath : in String;
Tree :in out NodePtr);

- WriteDiskData(Status, Tree, LibraryPath) ~ writes the tree pointed
- to by Tree to the data disk file in the directory specified by

-- LibraryPath after first making a copy if disk data file aiready exists
- in the module manager library directory specified by LibraryPath.

procedure WriteDiskData(
Status :in out StatusType;
Tree :in NodePtr; .
LibraryPath : in String);

end Disk_|O;

12

Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- nodes_.a

-- The internal representation is a structure containing nodes corresponding
-- to the files in the module manager library directory. The node type is

- declared in this package, the fields contain the information corresponding
- to each file in the module manager library. The operations that manipulate
-- the fields in the nodes are declarad in this package. The variables that

- contain the current number suffixes for each kind of file in the library

-- are aiso maintained in this package.

with Global_Package; use Global_Package: - Global types, constants.
with Calendar; -- for Time type. '

package Nodes_Package is
-- Node Kinds available
type NodeKind is (DefModule, SchemaModule, AbsModule, AdaPack,
AdaPackBody, EmbeddedC, CSource, ObjectFile);

-- Pointer to strings used in the nodes.

type StringPtr is access String;)
- CaresAbout node for the nodes that a node cares about (depends upon) .

type CaresAboutElement;

type CaresAboutPtr is access CaresAboutElement;

type CaresAboutElement is -

record .

Previous : CaresAboutPtr; - pointer to previous node in list
Next : CaresAboutPtr; — pointer to next node in list

NodeNumber :Integer; -~ NodeNumber of node cared about by
- the node that has this in its

— cares about list.
end record;
- CaredAboutBy node for the nodes that a node is cared about by (dependent
== upon).
type CaredAboutByElement;
type CaredAboutByPtr is access CaredAboutByElement;
type CaredAboutByElement is
record
Previous : CaredAboutByPtr; - pointer to previous node in list
Next : CaredAboutByPtr; — pointer to next node in list

NodeNumber :Integer; — NodeNumber of node that cares
- about the node that has this in
- its cared about by list.
end record;

—~ Node that is kept in a tree and in the external (physical) disk data file.
type NodeElement;

Intermetrics, Inc. 13

SAMeDL Development Environment - Module Manager Top Level Design

type NodePtr is access NodeElement;

type NodeElement is

record .
Previous : NodePtr; -- pointer to previous node in list
Next : NodePtr; -- pointer to next node in list
NodeNumber : Integer; -- Node number (unique) of node
Kind : NodeKind; -- Kind of node
Outdated : Boolean; -- True if node is outdated, else False
UnitName : StringPtr; - Unit Name of the unit that the node
-- was compiled from.
LibraryFile : StringPtr; -- File name of the file in the module
- manager library that contains the
- source text for the unit.
ExternalFile : StringPtr; -- File name of the source text file
_ - that the unit for this node was
- -~ compiled from.
TimeEntered : Calendar.Time; -- Time the node was created.
NumCaresAbout : Integer; - Number of nodes this node cares
- about.
CaresAbout : CaresAboutPtr; -- List of nodes this node cares
- about.
NumCaredAboutBy : Integer; - Number of nodes this node is cared
- -- about by.
CaredAboutBy : CaredAboutByPtr; -- List of nodes this node is
, - cared about by.
. end record; '

- Initialized when the database is read from the disk, incremented
-- each time a new node is created.
NextAvailNodeNumber : Integer;

- The suffixes are initialized when the database is read from the
-- disk. The file name for a kind is generated by a concatenation
-- of the prefix and the suffix and the sutfix is incremented.

Definition_Module_Prefix
Definition_Module_Suffix
Schema_Module_Prefix
Schema_Module_Suftix
Abstract_Module_Prefix
Abstract_Module_Suffix
Ada_Package_Prefix
Ada_Package_Suffix
Ada_Package_Body_Prefix
Ada_Package_Body_Suffix
Embedded_C_Prefi~
Embedded_C_Sutfix
C_Source_Prefix
C_Source_Suffix
Obiject_File_Prefix

14

: constant String := "D";
: Integer;

: constant String = "S";
: Integer;

: constant String := "A";
: Integer; .

: constant String .= "P";
: Integer;

: constant String := "B”;
: Integer;

: constant String = "E";
: Integer;

: constant String .= "C”;
: Imeger; .
: constant String := "O";

Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Object_File_Suffix : Integer;

-- CreateNode(Status. Node, Kind, UnitName, ExternalFile) -- creates a
-- new node and initializes the NodeNumber, Kind, UnitName and ExtemalFile
-- tields in the node.

-- Parameters:
Status - StatusOk i the procedure succeeds, StatusError otherwise.
Node - pointer to the newly created node.
Kind -the Kind of node to be created
UnitName - the name of the unit for which the node is to be created.
ExtermnaiFile - the external file name of the file from which the

unit is being compiled.

H

procedure CreateiNode(
Status :in out StatusType;
Node : out NodePtr;
Kind : in NodeKind;
UnitName : in String;
ExtemalFile : in String);

~ Empty (L) return Boolean - returns True or Faise depending on whether
- the list passed in is empty or not., This is an overloaded tunction,

- and takes lists of three types: CaresAboutPtr, CaredAboutByPtr, and

- NodePtr.

- Parameters:

- L - pointer to the head of the list.

tunction Empty (L : in CaresAboutPtr) retum Boolean;
function Empty (L : in CaredAboutByPtr) retum Boolean;
function Empty (L : in NodePtr) return Boolean;

- Append (Status, Node, List) -- appends Node to the List of nodes
- passed in. This is an overloaded function, and takes Node and List
- of the following types: CaresAboutPtr, CaredAboutByPtr, NodePtr.

- Parameters:

- Status —- StatusOk if the procedure succeeds, StatusError otherwise.
- Node --pointer to the node to be appended.

-- List - pointer to the head of the list of nodes.

procedure Append (
Status : in out StatusType;
Node : in CaresAboutPtr;
List : in out CaresAboutPtr);

procedure Append (
Status : in out StatusType; .
Node : in CaredAboutByPtr;
List : in out CaredAboutByPtr);

procedure Append (

Intermetrics, Inc. 15

SAMeDL Development Environment - Module Manager Top Level Design

Status : in out StatusType:
Node : in NodePtr;
List : in out NodePtr);

- Delete (Status, Node, List) -- deletes Node from the List passed in.

-- This is an overioaded tunction and takes Node and List ot the following
-- types: CaresAboutPtr, CaredAboutByPtr, and NodePtr.

- Parameters:

-- Status —~ StatusQk if the Delete succeeds, StatusError otherwise.

- Node - pointer to the node to be deileted trom List

-~ List - pointer to the head of the list of nodes from which to

-- delete the node.

procedure Delete (
Status : in out StatusType;
Node : in CaresAboutPtr;
List : in out CaresAboutPtr);

procedure Delete (
Status : in out StatusType;
Node : in CaredAboutByPtr; -
List : in out CaredAboutByPtr);

. procedure Delete (
Status : in out StatusType;
Node : in NodePtr;
_ List : in out NodePtr);

- CopyNode(Status, Node, NewNode) -- returns a copy of the node passed
- in. The next and the prev fields of the copied node are set to nuil.
-- Parameters:
- Status -- StatusOk if CopyNode succeeds, StatusError otherwise.
-~ Node - pointer to the node to be copied.
-- NewNode -- pointer to a new node that is a copy of the node passed
- in.
procedure CopyNode(
Status :in out StatusType;
Node :in NodePtr: .
NewNode : out NodePtr);

end Nodes_Package;

16 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

~tree_a

-- contains the pracedure specs and global variables to

- manipulate trees of nodes.

with Global_Package; use Global_Package; -- Global types, constants.

with Nodes_Package; use Nodes_Package; -- Types, constants, required variables.

package Tree_Package is

- The global tree that the data is read inta. Used by user-interface

- commands. Unnecessary, can be removed if the other packages declare.
- their own tree variable.

GlobalLibTree : NodePtr;

-~ AddNodeToTree(Status, Node, Tree) ~ adds the node to the library tree
- Tree. Not difterent from Nodes_Package.Append at the present time

-- because the Tree is not tree structured.

- Parameters: -

- Status - StatusOk if the procedure succeeds, StatusError otherwise.
-~ Node - pointer to the node to be appended to the tree. '
- Tree - pointerto the root of the tree to which the node is to

- be added.

procedure AddNodeToTree(
Status : in out StatusType;
Node :in NodePtr; .
Tree :in out NodePtr);

~ DeleteNodeFromTree(Status, Node, Tree) — deletes the node from the
- tree passed in. Not difterent from Nodes_Package.Delete at the present
-- time because the Tree is not tree structured.

Parameters:

- Status - StatusOk if the procedure succeeds, StatusError otherwise.

- Node - pointerto the node to be deleted from the tree.

- Tree -- pointerto the root of the tree from which the node is to

- be deieted.

procedure DeleteNodeFromTree(
Status : in out StatusType;
Node :in NodePtr;
Tree :inout NodePtr);

- AddCaresAboutArc(Status, From, To) - add a cares about arc
-- from the From node to the To nods.

Intermerrics, Inc.

17

_SAMeDL Development Environment - Module Manager Top Level Design

-- Parameters:

- Status -- StatusOk if the procedure succeeds StatusError otherwise.
-- From -- pointer to the node trom which the arc emanates.

- To - pointer to the node to which the arc points.

procedure AddCaresAboutArc(
Status :in out StatusType;
From :inout NodePtr;
To : in out NodePtr);

- AddCaresAboutArc(Status, Node, Kind, UnitName) - add a cares about arc
- trom node to the node for unitname, kind.

- Parameters:

Status -- StatusOk if the procedure succeeds, StatusError ctherwise.
From -- pointer to the node from which the arc emanates.

Kind -- Kind ot node to which the arc is to point.

UnitName -- the name of the Unit to which the arc is to point.

Tree -- pointer to the tree in which the nodes are present.

procedure AddCaresAboutArc(-
Status :in out StatusType;
From :inout NodePtr;
. Kind :in NodeKind;
UnitName : in String;
Tree :in out NodePtr);

- AddCaredAboutByArc(Status, From, To) — add a cared about by arc
-- from the From node to the To node.

-- Parameters:

- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- From - pointer to the node from which the arc emanates.

- To - pointer to the node to which the arc points.

procedure AddCaredAboutByArc(
Status :in out StatusType;
From :inout NodePtr;
To : in NodePtr);

-- AddCaredAboutByArc(Status, Node, Kind, UnitName, Tree) - add a cared
-- about by arc from node to the node for unitname, kind, in Tree

- Parameters:

18

Intermetrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- Status — StatusOk if the procedure succeeds, StatusError otherwise.
From - pointer to the node from which the arc emanates.

Kind - Kind of node to which the arc is to point.

UnitName -- the name of the Unit to which the arc is to paint.

Tree - pointer to the tree in which the nodes are present.

procedure AddCaredAboutByArc(-
Status :in out StatusType;
From :in out NodePtr;
Kind :in NodeKind;
UnitName : in String;
Tree :inout NodePtr);

- CopyTree(Status, Tree, NewTree) — retumns a pointer to the head of a
- tree that is a copy of the tree passed in.

- Parameters:

- Status -- StatusOk if the procedure succeeds, StatusError otherwise
- Tree - pointer to the root of the tree to be copied

- NewTree -- pointer to the root of the copied tree.

procedure CopyTres(-
Status :in out StatusType;
Tree :in NodePtr;
NewTree : out NodePtr);

- FindNode(Status, NodeNumber, Tree, Node) - find the nodes with

- nodenumber equal nodenumber and returns a pointer to the node.

-- Parameters:

- Status - StatusOk if the procedure succeeds, StatusError otherwise
- NodeNumber —~ Nodenumber of the node to find

- Tree ~ pointer to the root of the tree to search

-- Node - pointer to the found node.

procedure FindNode(
Status :in out StatusType;
NodeNumber : in integer;
Tree :in NodePtr;
Node :out NodePtr);

-- FindNode(Status, Kind, UnitName, Node) - finds the nodes with

- unit_name and kind and retums a pointer to the node.

-- Parameters:

-~ Status - StatusOk if procedured succeeds, StatusError otherwise

- Kind - Kind of the node to find

-~ UnitName -~ name of the unit that was compiled for the node to find.
- Tree - pointer to the root of the tree to search for the node.

- Node - pointer to the found node.

procedure FindNode(
Status :in out StatusType; -
Kind :in NodeKind;

Intermerrics, Inc. 19

SAMeDL Development Environment - Module Manager Top Level Design

UnitName : in String;
Tree :in out NodePtr;
Node :out NodePtr);

- FindUnitQutdatedness - finds i a Kind/UnitName is out of date. If

-- it is then the Outdated parameter is set to true, and a list of all

-- outdated cared about nodes is returned in List.

- Parameters:

-- Status - StatusOk if procedure succeeds, StatusError otherwise

- LibraryTree -~ Tree in which to search tor nodes and foliow arcs.

Kind - Kind of the node to find outdatedness of.

UnitName - Unit name of the Unit to check outdatedness of.

List — list of nodes that are outdated and thus cause the unit being
checked to be outdated.

procedure FindUnitOutdatedness(
Status :in out StatusType;
LibraryTree : in out NodePtr;
Kind :in NodeKind;
UnitName : in String;
Qutdated : out Boolean; -
List :inout NodePtr);

’

-- BreadthFirstWalk(Status, Tree, CaresAboutList, Head) -- walks

-- the cares or cared about arcs given and returns a list

- of nodes. Overioaded function, walks the CaresAboutList, or the

-- CaredAboutByList. '

-- Parameters:

- Status - StatusOk if the procedure succeeds, StatusError otherwise

—~ Tree -- pointer to the root of the tree to walk ‘

CaresAboutList/CaredAboutByl.ist - pointer to the head of the list
or nodes that care to be walked.

Head - pointer to the head of a list of nodes that were visited
during the walk.

procedure BreadthFirstWalk(
Status : in out StatusType;
Tree : in NodePtr;
CaresAboutList : in CaresAboutPtr;
Head : out Nodeftr); .

procedure BreadthFirstWalk(
Status :in out StatusType;
Tree : in NodePtr;
CaredAboutByList : in CaredAboutByPtr;
Head : out NodePtr);

20

Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- DepthFirstWalk(Status, Tree, CaresAboutlList, Head) -- walks the cares
- about/cared about by arcs and returns a list of nodes walked.

-- Overioaded function, walked CaresAbout arcs, and CaredAboutBy arcs.

-- Parameters:

-~ Status - StatusOk it the procedure succeeds, StatusError otherwise
-~ Tree - pointerto the tree to walk the nodes on.
CaresAboutLisyCaredAboutByList - list of nodes to walk

-~ Head - list of nodes visited during the walk.

procedure DepthFirstWalk(
Status :in out StatusType;
Tree : in NodePtr;
CaresAboutList : in CaresAboutPtr;
Head : in out NodePtr);

procedure DepthFirstWalk(
Status : in out StatusType;
Tree : in NodePtr;
CaredAboutByList : in CaredAboutByPtr; .
Head : in out NodePtr);

end Tree_Package; -

Intermetrics, Inc.

21

SAMeDL Development Environment - Module Manager Top Level Design

Appendix B Module Manager Commands

The man pages for the SDE module manager commands follow:

sde.cleanlib - reinidalize library directory

Syntax

sde.cleanlib [pathname]

Description

sde.cleanlib will empty the directory samedl.lib present in the directory specified by pathname
of all files, and reininalize the disk data file. The default pathname is the current directory.

s

Examples

The following sequence of commands cleans and reinitializes the SDE module manager library
in the directory /home/samedl.

$ cd /home/samedl
$ sde.cleanlib
The following command does the same thing:

$ sde.cleanlib /home/samedl

Diagnostics
The user is prompted to confirm the cleaning of the library. An error message is generated if the

samedLl.lib directory does not exist in the pathname specified (or current directory if the
pathname option is not specified).

22 Intermerrics. Inc.

- SAMeDL Development Environment - Module Manager Top Level Design

sde.creatlib - make a library directory

Syntax
sde.creatlib [pathname]

Description

- sde.creatlib creates and initializes a new SAMeDL library directory. It creates a directory named
samedLlib for the library in the directory specified by the pathname option. If the pathname
option is not used, the current directory is the default. sde.creatlib creates a disk-data file named

samedl.dat in the new directory. It initializes the disk data file to be empty and sets the
information fields to initial states.

Examples

/

The following sequence of commands creates a new SDE module manager library in the
directory /home/samedl.

$ cd /home/samedl
$ sde.creatlib
The following command does the same thing:

$ sde.creatlib /home/samed!

Diagnostics
The user is prompted to confirm the creation of the SAMeDL module manager library in the

directory specified by the pathname option (the current directory is the pathname opdon is not
specified). An error message is generated if the creation of the library is unsuccessful.

Intermerrics, Inc. 23

SAMeDL Development Environment - Module Manager Top Level Design

sde.list - list units/source files generated from the SAMeDL unit specified.

Syntax

sde.list [options] [unit_name]

Options

-a (Ada) List only units with Ada package or Ada package body
types.

-f source_file (file) consider the SAMeDL units declared in source_file that the
user created/compiled into the SDE module manager library as
parent units to find order information.

-L pathname (library) é)perate in SDE module manager library present in the
directory specified in pathname (the current directory is the

i default). - ' :

-1 (list) List the unit name, unit kind unit date, library source file, and

external file.
Description

sde.list provides a list of units in the library that were generated from the compilation of the
SAMeDL unit specified in the command line. All the units in the library are listed if no unit is
specified. This command would be useful for creating script files for automatic compiladon of
files into the user’s ada library.

Examples
The following sequence of commands lists the units generated by the compilation of the
SAMeDL module named abstract_med in the SDE module manager library present in the
directory /home/samedl.

$ cd /home/samedl

$ sde.list abstract_mod
The following command does the same thing:

$ sde.list -L /home/samed] abstart_mod

24 Intermetrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

The following sequence of commands lists only the Ada package specs and bodies that were
generated from the units in the file user.sme that the user compiled into the library. The SDE
module manager library is assumed to be in the directory /home/samedl.

$ cd /home/samedl

$ sde list -a -f user.sme
The following command does the same thing:

$ sde.list -L /home/samedl -a -f user.sme

Diagnostics
An erTor message is generated if the SDE module manager library does not exist in the directory

specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

Intermetrics, Inc. 25

SAMeDL Development Environment - Module Manager Top Level Design

sde.ls - list compiled units

Syntax

sde.ls [optons] [unit_name]

Options
-a (all) List all units visible in the library.
-f source_file (file) List only units found in the user created/compiled source file.
-L pathname (library) Operate in SDE module manager library present in
the directory specified by pathname (the current directory is the
dcf_ault). .
-1 (long) List unit, unit_type, library entry date, source file name,
i library file name.
Description

sde.ls provides a list of the SAMeDL units compiled in the SDE module manager library in the
current or specified user directory. Options are provided to give more or less extensive
information, or to provide a list of compiled units occurring in specified source files. Providing
the unit name of a unit gives information only about the specified unit.

Examples

The following sequence of commands lists the units in the SDE module manager library present
in the directory /home/samedl.

$ cd /home/samedl
$ sde.ls

The following command does the same thing:
% sde.ls -L /home/samedl

The following sequence of commands lists complete information about the unit abstract_mod
present in the SDE module manager library present in the directory /home/samedl.

$ cd /home/samed]

26 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

$ sde.ls -1
The following command does the same thing:

$ sde.ls -L /home/samedl -1

Diagnostics
An error message is generated if the SDE module manager library does not exist in the directory

specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

Intermetrics, Inc.) 27

SAMeDL Development Environment - Module Manager Top Level Désign

sde.rm - remove unit and library information

Syntax
sde.rm [options] unit_name

sde.rm [optons] source_file

Options
-L pathname (library) Operate in SDE module manager library in the directory
specified by pathname (the current directory is the default).
vV (verify) verify the removal of each unit.
v (verbose) list the units as they are removed.
Description

sde.rm removes all information associated with the named unit or file. When unit_name is
specified, the corresponding files in the library are removed.

When source_file is specified, the units in the user created/compiled file as well as the
corresponding files in the library are removed.

Examples

The following sequence of commands removes the unit abstract_mod from the SDE module
manager library present in the directory /home/samedl.

$ cd /home/samedl
$ sde.rm abstract_mod
The following command does the same thing:

$ sde.rm -L /home/samed] abstract_mod

28 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Diagnostics

An error message is generated if the SDE module manager library does not exist in the directory
specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

If the verify option is specified, the user is prompted to verify the removal of the specified units.

Intermerrics, Inc. . 29

SAMeDL Development Environment - Module Manager Top Level Design

sde.rmlib - remove SAMeDL library

Syntax
sde.rmlib [options]
Options
-L pathname (library) Operate in SDE module manager library in the directory
specified by pathname (the current directory is the defauit).
-V (verbose) list the units as they are removed..
Description -

sde.rmlib removes all information in the SDE module manager library in the directory specified
by the -L option (the current directory is the default). It deletes all the files in the SDE module
manager library directory, and the removes the directory.

Examples

The following sequence of commands removes the SDE module manager library present in the
directory /home/samed..

$ cd /home/samed]
- $ sde.rmlib
The following command does the same thing:
$ sde.rmilib -L /home/samedl
Diagnostics
The user is prompted to confirm the removal of the library. An error message is generated if the
SDE module manager library does not exist in the directory specified by the -L option (or in the

current directory is the -L opton is unspecified). Another error message is generated if the SDE
module manager library is locked by another process.

30 Intermetrics, Inc.

SAH’DL.T&.lO.lS Sep 92

APPENDIX G

CSU Test Cases

‘pojutad ST ‘$£0-YVV NOd ‘3aodax ayg

*C000LSAS 3® <d> I=2qug 11

‘uaaxos ayl uo saeadde ZO0OOLSAS

*<pd> S$S931d 01

‘ua2910s ayly

uo saeadde ’‘pg0-¥¥V¥ NDOd ‘3Ixodaa oyl

*CO00LSAS e <A> x93Ug °6

*uaexos syl uo saeadde zZO0OLSAS

<Zd4> ssoad
pue Jojeotpul uorjledyjuUadyINY
uy ,vvv, Ie3jug s

*pajdaooe sy ejeg

*J103eDYpuUI
uoseay [eAowady Ul ,da APJud ¢

‘uy pPaTTI3d senyea YaTm palerdsyp aae
J03edTpul uoyjowold pue ‘paJapysuod
jyuey uotrjowoad ‘ODIn ‘sweN ‘NSS
rusaxos ayl uo savadde 0z£0zZ090S

*<zd> ssoad

pue J3uweN Ul ,AdIWHNAS. A23Uud °9

*pajdsooe sy ejed

*NSS UT u66¥2-99-6L6u A23UT G

*u29a0s 9yl uo saeadde 10001LSXS

"OTEOZO090H 3° <Y> aAd3ugd

‘uaaxos ay3z uo saeadde QTE£0ZO90W

*0T00Z090W 3I® <I> adj3ug ¢

*uaa1os ay3 uo saeadde 0T00Z090MW

*01T00dIS 3} <S> adJUg ¢

*usalos ayy uo saeadde 0T00QIS

‘NNIWAIS e <d> x1dJUd T

NOILVOIJIYIA

dSNOdSHY

NOILOV

1e207 woxd Teaowsy ¥
WOXJ IDTPIOS e saAouwaa aanpasoad 3sa3 STYY

*pajeaausb sT ‘vLo0-VVV NOd .Esccmuoew: ISTT papuauwoday
*(0ds sT juex) yd sT speab asoym 3s77 buypuels uoyjowolid 93-s3 dU3
(T0 31S9I) UOT3OV (eAowsy 3st1

*pajurad
ST ‘PE€0-VYVV NOd ‘3dodex ayjg

*CO000LSAS 3e <d> JIajuy 11

*uaaaos a9yl uo saeadde 2zo00LSAS

‘<pd> ssaad 01

*uU2910s 3aYjy
uo saeadde ‘pgo-vvvV NOd ‘3aodaa ayg

*CO00LSAS 3e <A> I93uUuld 6

*uaaxos ayy uo saeadde 2Z2p00LSAS

*<zd> ssaad
pue I03eODTpul uUofleDTIUBYINY
Uy Xdv, xajugd °sg

*pojdedoe sT ejed

*103edTpul
uoseay TeAoway UT ,H, I93uld ‘L

‘uTt

POITTJI sanTeA yjtm palerdsyp aae
103e0TpUl uoTjIoWOId pue ‘pazaprIsuo)d
juey uotrjouwoad ‘OIn ‘sweN ‘NSS
‘usaxos ayy uo saeadde 0z£02090S

*<ZJd> ssaad
pue sweN ut GNITIOd, x23U3 -9

‘pejdeooe st ejeq

*NSS UT ,6660~-88-6L6y, J33ud °G

‘uaaaos ay3x uo saeadde TQ000LSAS

*ua3x0s ayjl uo saeadde OTC0Z090M

*OTEOZO90W 3° <Y¥> aajud .vj
*0T00Z090KW 3@ <T> aajud ¢

‘uaaxos ayjy uo saeadde 0T00Z090H

*0T004QIS e <S> ax9juld ¢

‘usaxons ayy uo saeadde 0100QIS

‘NNIWNQIS e <d> asjug 1

NOILVOIJATUIA

dSNOdSIA

NOILOV

1e207 wolqd [eAowdy Y
WolJ IDTPIOS © saaowax aanpasord 3sa3 STYL

*pajexauab sy ‘pgo-vVV NOJ ‘unpuelousy 3SIT papusuumosay

*(19s ST juex) G4 sT opeab asoym 3sT7 burpuels uotjowolrd 93-§F Y3

‘pajdadoe st ejeq

*J103eDTpUl uoseay
aajug

Teaouway ut 4N

‘urt
PaTTTJ soniea yjrm padkerdsip aae
I03eDTpUl uotTjowold pue ‘paaaprsuod
uey uotjowold ‘OIN ‘SweN ‘NSS

*<zd> ssaad

*uaaxos ayy uo saeadde 0Z€0Z090S pue aueN ut ,HdWNA, A93uUd
*pajdeaooe st ejeq *NSS Ut ,66vVL-6¥-6L6, 23Ul
‘uaaxos 9yl uo saeadde TOOOLSAS *OTC0C090H e <Y> a93ug
‘paderdsyp ST ‘NIVOV AWL "dDIOHD
ANZW AITTVANI ‘11000 @hessau aasq “O0TCO0ZO90H 3Ie <g> I33ugz
*uaaaos a9yl uo savedde OTC0ZO090H *<pd> ssaad
*UOT3OV JuBWILISUTIY pue UuoTldoy
TeAoway :3O0FOUYD nusW yoea jJo
uoy3dyaosap e ST 2a9Y] °UIVIDS Y
uo saeadde QICHZO90W ua2aos disH ‘<TJd-LJIIHS> Ssaad
*udaxos ayj) uo saeadde 0T£0Z090KH *0T00Z090W 3® <> aajug
‘usaxos a9yl uo saxeadde 0T00Z090M *01004IS 3® <S> aajud
*uaaxos ayl uo saeadde 0T100QIS "ANTNAIS e <d> Ia3ul

NOILVOIJINIA

dSNOdSIYU

NOILOV

‘pajexausb ST ‘pLo~-VYVV NOd ‘unpueIowsi 3SI poapuauwooay
¥ ‘nuau pue uIaI0s Yord 10J o[qelieae aae suddaos dray pue !palerdsip
pue aasn ajetadoadde !A3yrrqedeo diay dn-dod yjzym sSpraT3y 03 afqerreae
:(19S ST Juel) g3 ST speab ssoym 3syT buypuels uorjouwoad 93-63 9Yy3z woJ
uaym jeyy sSaTJTIaA danpaooad 3sa) STYL (€0 I591) UOTIOV ([eAoWSY 3IST'1 burpuels uoijowoid

Teo0] woxyd Teaoway
91e sobessauw I011d
aae smoputm dn-dod
I2TPTOS e buTAowadx

*pajurad
ST '$£0-VVV NOd ‘3aodaix ey

*Z000LSAS 3Ie <d> a23ud .AN_

*udaxos ayy uo saeadde z00OLSAS

*u29I0s 2Y3
uo saevedde ‘yCo-¥V¥V NOd ‘3aodaa ayl

‘<pd> ssaad ‘02 —

*Z000LSAS 3 <A> aI¥dj3ug 61

‘usaids ay3 uo saeadde z0OOLSAS

*<¢d> ssaad ‘81

‘PT2T3 I03edTpul

uoyjesTIUAYINY BY3 UT ST I0SaAND
‘ontfea e 103 ,VE¥, YITM UT PBTTTI
SY PI9TJ J03eODTPUl uUoTjIeOTIUBYINY

uorjeoyuaYINY IUBTTULTH * LY

‘paderdstp ST Ix03EeDTPUI
uorjeoyausayiny Ioj moputm dn-dod

*<TJd-3000> ssaad 91

‘PISTJ 03 0TpUl uorjedTIUIYINY
ayy uy st xosan) -palerdsyp
ST ‘YOLVOIANI NOILVOILNIAHINVY

GI'IVANI ‘T11v00 abessaw xasn

*<czd> ssoaad
pue Jo03eOdTpPUl uotrjedTjuUayINY

" <dI>
ssoad pue ,ydv. @N{EA I03EDTPUI
UT XXX 123U 61

*PTI9®T3 @pOd a0jedIpujg
uoyjeorjuayany ayly o3 saaou I10sand

*<YD> ssaad .va_

*PI98T3 a03edTpUl
uoseay [eaowdy aYjz U ST I0sSand
‘anfeA e 10j ,Su YITM UT POTTITI

ST PI®TJ I03LOTPUI UOSEaYy Teaoway

*<dd> ssaad
pue ,s, anTeA ybrTybtH ‘€1

*pakerdsTp ST I0j3eOTPUlL
uosedy Teaowdy xo3J moputm dn-dod

*<Td~-JJ0O> fs3ad .NH—

‘PISTJ I03ROTPUI uUOSEay TeAowdy
aYyl uy st Iosany ‘poalerdstp SY
‘VIVa AQITVANI ‘2€0TO0 @bessaw assf

*.zzd> ssaad
pue Io3edTpul uotrjudIjUSBYyINY
ut Xdva -193ug Tt

NOILVOIJIHIA

dSNOdSdH

NOILOV

“usa1os ayy uo saeadde OTE0ZO9OH “ZOOLSAS 32 <X> Jojud °Te

NOILVOIJIY3IA ‘ASNO4S3Y NOILOY

9-9

*pajurad
ST ‘602-VVV NDOd ‘jxodax ayy

*Z000LSAS 3 <d> aajug -C1

*usaJos ayjz uo
saeadde ‘g0z-¥YVV NOd ‘3aodax syl

*Z000LSAS 3I® <A> a8jud 1T

*uaai10s 9yl uo saeadde z000LSAS

*<ed> ssaad
pue J03eDTpuUl uorjedTULaY3INY
uy ,vvvy, a9auy ‘01

*pojdadoe sT ejeq

*<dD> ssoad pue sjutod uorjeonpd
UeTTTATD UT 4,684 23U °6

*pojdadoe st ejeq

*pa3dasooe sY ej3ed

*S3UT0d 9duUewIOJaad
KIng uy ,GLT, I0UT ‘L

‘uy PIaIIT3 sentea yztm palerdstp
axe juey pue ‘DIN ‘sueN ’‘NSS
*u931os ayl uo saeadde 00102090S

*<zd> ssaad
pue auweu Ut ,SSIMNOH, JI93ud *9

*pajdeooe sy ejed

*NSS UT 46696-99-6L64 93Ul °G

*u2910s 3yl uo saeadde TQ00LSAS

‘08002090H 3 <I> aLajug v

*u?9108 a3yl uo saeadde 08002090

‘0T00C090KH 1® <d> I23Uul °C

*u2910s ayjx uo saeadde O0T00Z090H

*0T004IS 3® <S> xd3ug ¢

*sjuTod uoyleonpd
KI1e3TTTH UT uG2T, I23Uud °8

*‘usaxos ayyx uo saeadde 01004IS

‘NANIWAIS e <d> I93jud .ﬁh

NOILYOIJdIY¥IA

dSNO4SJdH

NOILOV _

‘pajexausab sy ‘60Z-YVV NOd ‘d-GG8¢ wIod vad ¥V

* (0ds st)ueax)

pa ST opeab juaxano Isoym IATPIOS [ENPTATPUT uUe I0J sjurod aaTjeIFSTUTUPE JO uUOTIRINOTED

Tef3Tuy ue swiojaad aanpaocoad 3sa3 STYL .

L=

*pajutad |
ST ‘60Z-VVV NOd ‘3aodax ayg *C000JSAS e <d> Ix9jud €1
— ‘usaaos ayj3 uo sieadde zO0OOLSAS *<pd> Ssaad 'zl
‘uUdaIxds 8yl uo
saeadde ‘60Z-¥V¥V NOd ‘3aodax ayg *ZO00LSAS 13 <A> Iajud "T11
*<zgd> ssoaad
pue Jo3jedTpul uotjedTjUBYINY
‘u9axos ayj uo saeadde ZOOOLSAS ut w\vvy, I@juid ‘o1l
*<yo> ssaad pue sjurod uotrjeonpd
‘pojdaooe sT ejeq UBTTTATD UT 4GLw X33Ud °6
1

*pajdaocoe sT ejeq

*sjutod uortjeonpy
Axej3T{TW Ut 00T, I33uUd 8

*pajdaooe sT ejeq

*s3jutTogd 9duewIojaad
A3ng uyr 4w0GTw I®3U3d ¢

‘ut paTlTJd sentea Yyjtm palerdstp
.@ae yuey pue ‘DIn ‘sweN ‘NSS
*usaaos ayyx uo saeadde 00T02090S

*<zJd> ssaad
pue sweN Ut ,LLOOS, JI923ud 9

‘po3xdsooe sT ejeq

*NSS Ut ,66€6-21-6L64 A93U3 °9

‘usalos ayyz uo saeadde TO0OLSAS

‘0800C090H 3I® <I> A33uUg ¢

*u’la10s ayy uo sieadde 0800Z090NW

‘OTO0C090KWH 3 <d> a|jug .nﬂ

*udaxos ayjx uo saeadde 0T100Z090W

‘01004dIS 3¢ <S> avjug -°¢

*uaaxos ayjy uo saevadde 01004IS

‘NNIWAIS e <d> A9/uxd T

NOILVOIATYHIA

dSNOdSJd

NOILOV

§

*pojexausb ST ‘60Z-VVV NOd

'd-668€ wI1od v@ ¥V " (I9S ST Yuex)

634 ST °peab jusaxand Issoym IOTPTOS TenpraTpuyl ue I03j sjutod aATjeRIISTUTWPR JO uUOTIEINOfEeD

1er3TUT ue swuiojxad aanpaosoad 3s93 STYL

*TZ0 1IS35) SuoT3oV UOoT)epusliioosy uoTjoWwoid

»"

»n

‘pojdadoe ST ejeq

*sS3juTod 3aodourwiojaad
KAIe)3TTIW utr 06T, I33jud °TT

*pajdadooe. sT ejeq

*S3UTO04 8dueuaojaad
Ayng ut ,T0Z4 I93UT ‘O

*paaoubt aae mm&ouum Koy

‘sjutod 9duewIrojaad
£ang ut ,3pogv, IBUT "6

*u2910s8 9yl uo saeadde QOT0Z090MW

‘<btd> ssoad ‘8

*103LOTPUI uUoTjeODTIUIYINY

pue ‘sjuyod uotrjeonpd

UeTTTATD ‘sjutod uorjeonpd
Kxea3TTIH ‘sjutod souewaojasd Lang
:sp1or3 Aajus ay3z jo uorjdraossep
e ST 9xayl, °UIvXOSs B

uo saeadde 00THZ090S ud@aaos diay

‘<Td> ssaad ‘L

e

‘u9a10s ay3z uo saeadde 0010Z090S

*<zd> ssaad
pue sweN ur ,osSMOvV[r, a93ujd ‘9

‘pojdedoe sT ejeq

*NSS Ut ,6656-20~6L6a X23Uy

‘uaaxos ayjy uo saeadde T000LSAS

*0800Z090KH 3 <I> a{juyg °

*uaaaxos ay3y uo saeadde 0800Z090M

‘u@ai0s ayjy uo saeadde 0T00Z090MW

*0T004QIS 3Ie <S> aL|3juyg .

*uaaxos ayjy uo saeadde 0T100dIS

S
v
.odoowowoz.ua <d> a{jug ‘¢
4
T

*ANJWAIS e <d> aa3umg -

NOILVOIJAIHIA

ISNOdS3IY

NOIJLOVY

‘pojerausb ST ‘602-VYV NOd ‘A-GSBE WIOJ VA V

‘nuauw pue u3IOS Yoead I0J

afqerTeAe aie suaaios dray pue !paleydsip 21e sebesssw J0xxa pue xasn ajeradoadde !LA3trrqedes
dtay dn-dod y3arm spratJy 103 atqeireae axe smoputrm dn-dod ! (0Dds st Nuea) v3d st epeab juaiand
9soym IITPTOS TenpTATpul ue 103 sjutod IATIRIISTUTWPR JO UOTIEINOTED [eTJTUT ue Hutwiojiad

uaym 3eyy saTITIaa aanpaooad 3sa3 sSTY]

*T€0 ISdL) SUOT}IOV uoTjepusuuoday uotjowoad

‘paojdadoe sT ejeq

‘sjutod uorjeonpy
UBTTTATD UY 007, I33Uy °0¢

*P1a@T1J saurtod

uotjeonpd UeITTATD 8yj uy st
xosan)y ‘-paderdstp ST ‘NOILVONGA
NVITTIAID FALLOV 404 00T SI QIMOTIV
SINIOd HNWIXVW ‘10800 3bessaw 1asn

*<zd> ssaad pue sjutod uorjesdnpi
URTTTATD UT ,T0T, I93ud °61

‘paIouby axe sayoals Aay

*sjuyod uorjeonpi
UeTTYATD ut ,dbeaaay, xejul -8y

*pajdeooe sy ejeq

*S3UTO04d 9ouewaojaad
AXe3TTTH UT 40GTw I23Ud LT

*PI®¥3 sjuyod

uotjeonpd Axe3T{TW a2y3 uy sy
Josan) ‘-paleldsyp ST ‘NOIIVONGE
AUVLITIN FAILOV d0d 0ST SI QIMOTIV
SINIOd WNHIXYW ‘66L00 ®bessaw xasp

*<ed>
ssaad pue sjutod 9ouewiojiad

AIeITYTH UT ,TST, J93ug 97

‘paxoubt sae saxyoajls Kay

‘S3UTO04d 9duUewuI0Jaad
Axe3yTTW uy ,motreg, J83ug ST

*pajdeooe sT e3RQ

‘SjUTOod IIDURWIOJIDd
£3ng uy ,0024 I93UT -¥I

‘pPratT3I

S3UTO0d 8duewaojaad >U5Q ayly Cﬁ wﬂ
xosan) .cpalerdsyp ST ‘FONVWIOJUId
ALNA FAILOV YOod 002 SI QAMOTIV
SINIOd HNWIXVH ‘€£0800 abessau xssq

*<zd> ssaad pue
PT3T3 I103OTPUT UOT3EOTIUIYINY
ut ,Vwvy, aejum Cgx

*pajdasoe sT ejeQ

*sjutod uorjesnpd
UBTTTATD Ut ,00Tw X33Uud -2V

NOILVOIJATIHIA

dSNOdSsdy

NOILOV

b

ENS

01-9
*pajutad
ST '602~-VYVYVY NOd ’‘3xodaax ayy *ZTO0O0LSAS 13 <d> I93uqd (L2
‘uavI0s |/Y3 uo mumwmaw 2000LSAS ‘<pd> Ssaad *9¢
*udaaons ayl uo
saeadde ‘60Z-¥VV¥ NOd ‘3aodax ayg *Z000LSAS 3 <A> I93uld *G¢
*uaagos 9yl uo saeadde zo00LSAS *<zd> ssaad °ve

.vamwu 103e0fpul
uofjesyiuaylny syl uy sy I0sand
‘anfeA @ 103 ,VVV, YITM Ut PaTITJ

‘<q0> ssaad pue ,yvvy, I0o3e2Ipur

ST PT9TJ I0jeODTpPUl UOFjeOTIUaIYINY uotjedrauayny IYLITUBTH €2
‘poherdsIp ST Ioj3edTpuUl
uorjeonTiuayany xoj mopuym dn-dog *<T4-3Q02> ssaid -z¢

*PTI9TJ I0jeDTpUl uUoyjzedfiljuayany
ay3 uyt st xosan)d -poakerdstp
ST ‘YOLVOIANI NOILVOILNAHILAY
AIIVANI ‘T1y00 obessau aassp

*<zd> ssaad pue
PI2TJ J03eO0Tpul uorjedIjUaYyINY

ur ,VeNa

I93u3

‘12

— NOILVOIJIHIA

dSNOdSaY

NOILOV

